Textversion des Videos

Transkript Franck-Hertz-Versuch (Übungsvideo)

Herzlich willkommen zu diesem Übungsvideo zum Franck-Hertz-Experiment. Wir werden hier gemeinsam 4 Aufgaben bearbeiten, wovon einige bereits in vergangenen Abiturprüfungen aufgetaucht sind. Für Bearbeitung dieser Aufgaben solltest du natürlich wissen, was das Franck-Hertz-Experiment überhaupt ist. Außerdem solltest du etwas über das Bohrsche Atommodell und die Energieniveaus in einem Atom wissen.

Übersicht über das Franck-Hertz-Experiment

Die Aufgaben bauen schrittweise aufeinander auf. Zuerst besprechen wir den Aufbau des Experimentes und was eigentlich gemessen wird. Dann kommt eine Frage zur grafischen Auswertung und darauf folgend klären wir, in welcher Verbindung das mit dem Bohrschen Atommodell steht. Zum Schluss berechnen wir noch die Wellenlänge der emittierten Strahlung.

Aufgabe 1 - Der Versuchsaufbau

Beginnen wir mit der ersten Aufgabe. Hier soll eine Skizze angefertigt werden und der Messvorgang beschrieben werden. Der Versuchsaufbau besteht hauptsächlich aus einem Glaskolben, in dem sich ein Gas mit sehr niedrigem Druck befindet. Das ist meist Quecksilber oder Neon.

Beschleunigung der Elektronen

In diesem Kolben sollen Elektronen beschleunigt werden, also braucht man eine Kathode. Diese ist eine Glühwendel und wird über eine Heizspannung erhitzt, so dass Elekronen freigesetz werden. Diese Elektronen werden zu einem Gitter beschleunigt. Dafür liegt zwischen Gitter und Kathode eine regelbare Beschleunigungsspannung U_B. Die Elektronen fliegen durch das Gitter durch und werden an der Anode aufgefangen.

Messen des Elektrostroms

Mit einem Strommessgerät kann der Elektronenstrom zwischen Anode und Kathode gemessen werden. Allerdings wird zwischen Anode und Gitter noch eine geringe Gegenspannung angelegt. Diese soll dazu dienen, dass nur die Elektronen ankommen, die auch eine ausreichend hohe kinetische Energie besitzen. Für die Messung werden nun die Werte der Stromstärke für verschiedene Beschleunigungsspannungen aufgenommen.

Aufgabe 2 - Minimus und Maximus

Kommen wir zur zweiten Aufgabe. Die Auswertung der Messergebnisse des Experiments ergibt dieses Diagramm. Erkläre das Auftreten des ersten Maximums und des folgenden Minimums der Stromstärke.

Also: Die Kurve zeigt die Stromstärke in Abhängigkeit von der Beschleunigungsspannung. Mit zunehmender Spannung steigt zunächst die Stromstärke, doch dann fällt sie plötzlich ab. Das können wir dadurch erklären, dass die Elektronen einen Teil ihrer kinetischen Energie an die Quecksilberatome abgegeben haben. Nach dieser Wechselwirkung werden sie wieder neu beschleunigt.

Doch erfolgt dieser Zusammenstoß kurz vor dem Gitter, dann reicht die restliche Strecke nicht aus, um die Elektronen so zu beschleunigen, dass sie es bis zur Anode schaffen. Sie werden vom Gegenfeld abgebremst und vom Gitter eingefangen. Beim ersten Maximum haben die Elektronen also gerade so viel Energie, dass sie diese noch nicht an die Quecksilberatome abgeben.

Steigung der Beschleunigungsspannung

Mit steigender Spannung geben dann die ersten Elektronen ihre Energie ab und schaffen es nicht zur Anode. Im Minimum sind es dann die meisten Elektronen, die abgefangen werden. Erst, wenn die Beschleunigungsspannung weiter steigt, schaffen es die Elektronen wieder die Anode zu erreichen, auch nachdem sie eine Energieportion abgegeben haben. Damit ist die Frage 2 beantwortet.

Aufgabe 3 - Das Bohrsche Atommodell

Die dritte Aufgabe lautet: Erläutere, inwiefern die Ergebnisse des Experimentes das Bohrsche Atommodell stützen. Die eben beschriebenen Messergebnisse zeigen, dass der Strom nur bei bestimmten Spannungswerten einbricht. Diese Abstände sind regelmäßig und beschreiben immer eine gleiche Spannungsdifferenz. In diesem Fall sind das 4,9 Volt.

Daraus ergibt sich eine Energiedifferenz Delta E gleich e mal Delta U gleich 4,9 Elektronenvolt. Immer wenn die Elektronen diese Energie erreicht haben, geben sie diese an die Quecksilberatome ab. Vorher aber noch nicht! Das zeigt uns, dass die Quecksilberatome nur den Energiebetrag von 4,9 Elektronenvolt aufnehmen können. Diese “Energieportion” führt dazu, dass das Atom in einen angeregten Zustand übergeht.

Die verschiedenen Energieniveaus

Dieses Ergebnis bestätigt die von Niels Bohr postulierte quantenhafte Energieabsorption der Atome. Bei Bohrs Atommodell können die Elektronen in der Hülle nur diskrete Energieniveaus besetzen. Um von einem tieferen zu einem höheren Niveau zu springen, ist dann eine charakteristische Energiedifferenz Delta E nötig.

Wenn wir uns das Energieniveauschema von Quecksilber anschauen, sehen wir, das die Energiedifferenz zwischen dem Grundzustand und dem ersten angeregten Zustand genau 4,9 Elektronenvolt beträgt. Somit wird durch das Experiment Bohrs Atommodell eindruckvoll bestätigt.

Aufgabe 4 - Wellenlänge und Spektralbereich

Nun noch zur vierten Aufgabe: Nach der Anregung geben die Quecksilberatome ihre Anregungsenergie in Form von Photonen ab. Berechne die Wellenlänge der emittierten Strahlung und gib den Spektralbereich an. Nach der von Einstein angegebenen Formel berechnet sich die Energie von Photonen als Produkt des Planckschen Wirkungsquantums h und der Frequenz f des Photons, wobei die Frequenz die Lichtgeschwindigkeit c durch die Wellenlänge Lambda ist.

Das Plancksche Wirkungsquantum

Stellen wir nach der Wellenlänge um, so ist Lambda gleich h mal c durch E Photon. Die Energie der Photonen ist die Anregungsenergie des Atoms. Und das ist ja die kinetische Energie der Elektronen. Also folgt, dass E Photon gleich E kin gleich 4,9 Elektronenvolt. Setzen wir nun alles in die Formel ein. Das Plancksche Wirkungsquantum kann man mit verschiedenen Einheiten angeben.

Für unsere Rechnung bietet sich die Angabe 4,136 mal 10 hoch Minus 15 Elektronenvolt mal Sekunde an, weil die Energie bisher auch in Elektronenvolt angegeben ist. Die Lichtgeschwindigkeit ist rund 3 mal 10 hoch 8 Metern pro Sekunde. Und im Zähler stehen die 4,9 Elektronenvolt. Die Elektronenvolt und Sekunden kürzen sich und das Ergebnis lautet 2,53 mal 10 hoch Minus 7 Meter. Das sind 253 Nanometer und das ist der Bereich von Ultravioletter Strahlung.

Jetzt haben wir alles geschafft. Ich hoffe, mit diesen 4 Aufgaben bist du gut gerüstet für deine nächste Prüfung und kannst dich auch etwas fürs Abi vorbereiten. Viel Erfolg!

Informationen zum Video
3 Kommentare
  1. Default

    Habe immer Probleme mit dem umrechnen.. Wie rechnet man eV in V oder anders herum um?

    Von Mariella Vonderwense, vor mehr als einem Jahr
  2. Default

    Mega gutes Video !

    Von Jxgoldmann, vor fast 2 Jahren
  3. Default

    Moin! Gut erklärtes Video, verstehe nur eine Sache nicht:
    Müsste es nicht eigentlich so sein, dass bei 4,9 Volt ein Minimum vorhanden ist, da dort die Elektronen ihre Energie an die Hg Atome abgeben und somit kein/kaum Elektronenfluss am Amperemeter stattfindet ?

    Von Pauldantzer, vor etwa 2 Jahren