Advent, Advent, 1 Monat weihnachtliche Laufzeit geschenkt.

Nicht bis zur Bescherung warten, Aktion nur gültig bis zum 18.12.2016!

Textversion des Videos

Transkript Franck-Hertz-Versuch

Hallo und Herzlich willkommen zu Physik mit Kalle, wir wollen uns heute aus dem Gebiet Atom- und Kernphysik mit dem Franck-Hertz-Versuch beschäftigen. Für dieses Video solltet Ihr bereits den Film zum Bohrschen Atommodell gesehen haben. Wir lernen heute: Was der Franck-Hertz-Versuch ist, was dabei genau passiert und warum dieser Versuch eigentlich so wichtig ist. Dann wollen wir mal. Der Franck-Herz-Versuch wurde ungefähr 1911 bis 1914 von den beiden Physikern James Franck und Gustav Hertz durchgeführt. Die beiden erhielten dafür auch 1925, also in Nobelpreisdimensionen relativ schnell, den Nobelpreis. Was bei diesem Experiment beobachtet wird, lässt sich eigentlich ganz einfach beschreiben. Elektronen werden in einer gasgefüllten Röhre beschleunigt, stoßen dabei mit den Gasatomen zusammen und geben Energie an diese Atome ab. Wie genau man diesen Versuch aber nun aufbaut, welche Ergebnisse er liefert und welche Schlüsse man daraus zieht, das sehen wir uns in den nächsten Kapiteln an. Der Aufbau des Versuches ist eigentlich relativ einfach. Wie gerade schon gehört, brauchen wir zunächst einmal einen gasgefüllten Kolben, im Bild blau. In diesem Kolben wollen wir Elektronen beschleunigen. Wir brauchen also eine Kathode, die Elektronen frei setzt. Und damit sie das auch tut, wird unsere Kathode mit der Heizspannung UH beheizt. Als nächstes brauchen wir ein Gitter in unserem Kolben, gekennzeichnet mit G, auf das die Elektronen von der Kathode aus mit der Beschleunigungsspannung UB hinbeschleunigt werden. Die Beschleunigungsspannung können wir frei regeln zwischen 0 und 80 Volt. So, als letztes fehlt uns noch, Ihr habt es vielleicht schon erraten, eine Anode, dort wo die Elektronen ankommen. Wir wollen es aber in diesem fall den Elektronen nicht zu einfach machen und legen zwischen Gitter und Anode eine Gegenspannung UG von 1,5 Volt an, die die Elektronen bremsen soll. Und das wars auch eigentlich schon. Damit wir jetzt noch sehen können, was genau passiert, installieren wir noch 2 Messgeräte. Und zwar einen Spannungsmesser, mit dem wir UB messen und einen Strommesser, der uns anzeigt, wieviel Strom zwischen Kathode und Anode fließt. Das einzige, was wir nun noch nicht wissen ist, mit welchem Gas unser Kolben gefüllt ist. Normalerweise benutzt man hierfür Quecksilberdampf, aber auch Neon ist eine gute Variante. Warum erkläre ich Euch nachher. Erst einmal gehen wir davon aus, dass unser Kolben mit Quecksilberdampf gefüllt ist. So, jetzt wissen wir, wie man den Versuch aufbaut, nun wollen wir uns ansehen, wie man ihn durchführt. Das ist zum Glück nicht besonders schwierig. Wir machen einfach folgendes: Wir erhöhen sehr langsam die Beschleunigungsspannung UB und schauen immer nach, welcher Strom zwischen K und A fließt und schreiben dann das Wertepaar, also Beschleunigungsspannung und dazugehörend der Strom I auf. Dadurch ergibt sich ungefähr folgendes Diagramm. Das ist jetzt ein wenig verwunderlich, denn eigentlich würden wir annehmen, dass der Strom linear mit der Spannung steigt. Es scheint aber bestimmte Werte zu geben, an denen plötzlich der Strom stark sinkt, um dann wieder zu steigen und nach der gleichen Distanz, Ihr könnt es im Bild sehen, 4,9 Volt, plötzlich wieder absinkt. Wir schreiben also auf, das Ergebnis ist, der Strom steigt nicht linear mit der Spannung an, sondern fällt periodisch immer wieder ab. Der Grund dafür ist, sobald die Elektronen durch die Beschleunigungsspannung eine bestimmte kinetische Energie E erreicht haben, können sie diese an die Gasatome abgeben. Und dann sind sie so langsam, dass sie unsere kleine Gegenspannung von 1,5 Volt nicht mehr überwinden können. Deshalb der plötzliche Stromabfall. Fülle ich meinen Kolben nun statt mit Quecksilberdampf, mit Neon, dann kann ich die Stellen, an denen die Elektronen die Energie abgeben, sogar sehen. Dann sehe ich in meinem Kolben nämlich ungefähr so was. Was dieses Ergebnis nun bedeutet, das sehen wir uns im letzten Kapitel an. Erinnert Ihr Euch an das Bohrsche Atommodell? Das besagte, dass ein Atom nicht beliebige Energiewerte, sondern nur ganz bestimmte, diskrete, Energiewerte aufnehmen kann. Nämlich die, die benötigt werden, um ein Elektron auf eine höhere Bahn zu heben. Und genau das beobachten wir beim Franck-Hertz-Versuch. Dieser Versuch belegt also das Bohrsche Atommodell. Im Versuch mit Neon sieht man es besonders schön. Die Elektronen werden beschleunigt, und sobald die Spannung eine so große kinetische Energie erzeugt, dass die Anregungsenergie für das Atom erreicht ist, springt das Elektron im Neon auf eine höhere Bahn. Nun ist der Energieunterschied zwischen diesen beiden Bahnen im sichtbaren Bereich. Das heißt, wenn das Elektron nun wieder herunterspringt, setzt das Neon ein rotes Leuchten frei. Das sind die roten Streifen, die wir gerade eben eingezeichnet hatten. Ihr seht also, man braucht für diesen Versuch kaum komplizierte Geräte. Einen gasgefüllten Kolben, ein paar Spannungsquellen und ein Strom- und Spannungsmessgerät. Da er außerdem leicht aufzubauen und schnell durchzuführen ist und einigermaßen verständliche Ergebnisse liefert, die die Quantentheorie beweisen, ist der Franck-Hertz-Versuch auch heute noch einer der beliebtesten Schul- und Demonstrationsversuche. Wir wollen noch einmal wiederholen, was wir heute gelernt haben. Beim Franck-Hertz-Versuch werden Elektronen in einem mit gasgefülltem Kolben auf ein Gitter zu beschleunigt. Erreicht die kinetische Energie der Elektronen die Anregungsenergie des Gases, so können die Elektronen nach dem Bohrschen Atommodell durch Stöße Energie an die Gasatome abgeben. Im Versuch führt das dazu, dass die Elektronen dann die kleine Gegenspannung hinter dem Gitter nicht mehr überwinden können und ein starker Stromabfall gemessen wird. Wir haben gesehen, der Franck-Hertz-Versuch belegt das Bohrsche Atommodell. Und ist damit einer der einfachsten und zugleich wichtigsten Versuche der Quantentheorie. So, das wars schon wieder für heute. Ich hoffe, ich konnte Euch helfen. Vielen dank fürs Zuschauen, vielleicht bis zum nächsten Mal, Euer Kalle.

Informationen zum Video
5 Kommentare
  1. Default

    @Karsten Schedemann,
    Alles klar! Vielen Dank für die Antwort; die Videos sind sehr hilfreich, gerade wenn man über Schulisches hinaus möchte.

    Von Greta B., vor 11 Monaten
  2. Karsten

    @Greta B,

    die Polung der Heizspannung, kann vernachlässigt werden. Die Glühkathode ist zumeist eine Glühwendel, diese ist im Bild senkrecht zum Beschleunigungsweg orientiert. Daher stören sich die Magnetfelder kaum. Daher ist die Polung nicht wichtig, wichtig wäre nur das die Spannung hoch genug ist, damit freie Ladungsträger erzeugt werden.

    Von Karsten Schedemann, vor etwa einem Jahr
  3. Default

    Aber ist die eingezeichnete Beschleunigungsspannung der Heizspannung nicht auch entgegengesetzt? Müsste die Quelle nicht genau anders herum gepolt sein? So wie sie eingezeichnet ist, verstärkt es dich nur das Gegenfeld.

    Von Greta B., vor etwa einem Jahr
  4. Default

    Klasse video

    Von Mandana Sarram, vor etwa einem Jahr
  5. Default

    Super erklärt ! Vielen Dank :)

    Von Eva 1196, vor etwa 2 Jahren