Advent, Advent, 1 Monat weihnachtliche Laufzeit geschenkt.

Nicht bis zur Bescherung warten, Aktion nur gültig bis zum 18.12.2016!

Textversion des Videos

Transkript Größenvergleich bei Brüchen – Rechteckstreifen (1)

Hallo und herzlich willkommen. Drei von vier Deutschen empfinden Lebensfreude, stand kürzlich in einem Zeitungsartikel. In einem anderen Zeitungsartikel habe ich gelesen: Vier Fünftel aller Deutschen können nicht Nein sagen. Man könnte auch sagen vier Fünftel der Deutschen sind Ja-Sager.

Gibt es nun mehr lebensfrohe Deutsche oder mehr Ja-Sager? Kann man das überhaupt vergleichen? Können wir entscheiden, was mehr ist: Drei Viertel oder vier Fünftel?

Ja, das können wir, und in diesem Video geht es genau darum: den Größenvergleich von Brüchen. Dabei greifen wir auf die anschauliche Bedeutung von Brüchen als Anteile an einem gemeinsamen Ganzen zurück.

  • Zunächst wiederholen wir kurz, wie man Anteile durch Brüche beschreibt und was es mit dem Zähler und Nenner auf sich hat.
  • Dann widmen wir uns dem Vergleich von Brüchen und klären zunächst, wann das überhaupt sinnvoll ist. Dann stelle ich dir eine schöne und anschauliche Methode vor, Brüche zu vergleichen: die Streifenmethode.
  • Mit einem weiteren Beispiel kannst du dann das neu Gelernte festigen und anschließend selbst anwenden.

Wiederholung: Anteile als Brüche darstellen

Zunächst eine kurze Wiederholung: Wie beschreibt man Anteile durch Brüche? Man braucht ein Ganzes, das in mehrere gleich große Teile geteilt wird. Von diesen Teilen wählen wir dann einige aus: das ist der Anteil am Ganzen.

Der zugehörige Bruch wird gebildet aus der Anzahl der schraffierten Teile - hier 3 - und der Zahl aller Teile, also der Art der Teilung. Hier wurde in acht Teile geteilt.

Der Bruch lautet also drei Achtel. Die Zahl oberhalb des Bruchstrichs ist der Zähler, unten steht der Nenner.

Brüche vergleichen

Jetzt wollen wir Brüche vergleichen. Wann ist das überhaupt sinnvoll? Können wir einen dreiviertel Liter Milch mit einem halben Kilo Äpfel vergleichen? Sicher nicht. Aber mit einem halben Liter Apfelsaft vergleichen – das ist sinnvoll.

Brüche mit Einheiten müssen sich auf dieselbe Einheit beziehen. Bei der Mengenangabe von Milch und Apfelsaft liegt die Volumeneinheit Liter vor. Eine Viertel Pizza mit fünf Achteln einer Torte zu vergleichen, wäre demnach wieder nicht sinnvoll.

Drei Viertel aller Deutschen mit vier Fünfteln aller Deutschen wie im Eingangsbeispiel können wir hingegen miteinander vergleichen, weil ein gemeinsames Ganzes vorliegt. Das Ganze sind die Einwohner von Deutschland.

Das solltest du im Hinterkopf haben, wenn wir gleich Brüche vergleichen. Denn wir werden dabei Maßeinheiten, Kuchensorten usw. außer Acht lassen und uns nur auf die Brüche konzentrieren.

Wir betrachten die Brüche 2/6 und ⅗. Wie können wir nun entscheiden, ob 2/6 kleiner oder größer als ⅗ ist? Wir nutzen aus, dass Brüche Anteile darstellen.

Zwei Sechstel bedeutet ja, dass ich das Ganze in sechs gleich große Teile teile und davon zwei Teile nehme. Das gemeinsame Ganze stellen wir jetzt für jeden der beiden Brüche durch einen Papierstreifen dar. Wir teilen ihn in 6 gleichgroße Teile.

Betrachten wir davon einen Teil, entspricht das dem Bruch ein Sechstel, 2 Teile entsprechen dem Bruch zwei Sechstel und so weiter, 5 Teile stellen den Bruch fünf Sechstel dar. Sechs Teile, also sechs Sechstel, sind das Ganze. Das ist nun der Bruchstreifen für Sechstel.

Den Bruchstreifen für Fünftel stellen wir genauso her. Wichtig: der Streifen muss dieselbe Länge haben wie der Sechstel-Streifen! Wir teilen ihn in fünf gleich große Abschnitte und beschriften diese mit ein Fünftel, zwei Fünftel bis fünf Fünftel. Das ist unser Fünftel-Streifen.

Um jetzt 2/6 mit ⅗ zu vergleichen, markieren wir die Anteile auf den jeweiligen Papierstreifen. Bei dem Sechstel Streifen markieren wir die ersten beiden Teile. Denn sie stellen den Anteil 2/6 dar. Dasselbe machen wir mit dem Fünftel-Streifen. Wir markieren die ersten drei Teile als den Anteil ⅗.

Anschließend legen wir die beiden Streifen untereinander. Wir lesen ab: drei Fünftel sind deutlich mehr als zwei Sechstel. Oder mathematisch ausgedrückt: drei Fünftel ist größer als zwei Sechstel.

Wir können also folgende Regel festhalten:

Von zwei Brüchen ist derjenige größer, bei dem im Vergleich der zugehörigen Bruchstreifen die größere Fläche markiert ist.

Beispielaufgabe

Wenden wir das Gelernte auf zwei weitere Beispiele an. In welchem Topf ist der Anteil der roten Bonbons größer?

  • Topf 1 enthält insgesamt 12 Bonbons, davon 7 rote, ihr Anteil ist also sieben Zwölftel.
  • Topf 2 enthält 9 Bonbons, davon 5 rote. Ihr Anteil ist hier demnach fünf Neuntel.

Für’s Vergleichen brauchen wir einen Zwölftel-Streifen und einen Neuntel-Streifen. Wir stellen zwei gleichgroße Papierstreifen her und teilen den einen Streifen in 12 gleichgroße Teile, den anderen in 9 gleichgroße Teile. Das sind unsere Zwölftel- und Neuntel-Streifen

  • Beim Zwölftel-Streifen markieren wir die ersten 7 Teile. Sie stellen den Anteil 7/12 vom Ganzen dar.
  • Beim Neuntel-Streifen markieren wir die ersten 5 Teile. Sie stellen den Anteil 5/9 vom Ganzen dar.

Da beiden Papierstreifen gleich groß sind beschreiben die Brüche Anteile eines gemeinsamen Ganzen. Deshalb können wir sie vergleichen. Wir legen sie also untereinander und können sehen, dass beim Zwölftel-Streifen bei dem der Anteil 7/12 dargestellt ist, mehr Fläche markiert ist. Das bedeutet, der Bruch 7/12 ist größer als 5/9.

Die Eingangsfrage müssen wir ja auch noch beantworten: Drei Viertel aller Deutschen sind glücklich. Vier Fünftel der Deutschen sind Ja-Sager. Sind drei Viertel aller Deutschen mehr Menschen als vier Fünftel?

Das Prozedere, einen Viertel-Streifen und Fünftel-Streifen, kennst du bereits. ich habe sie deshalb schon vorbereitet. Wichtig ist … Richtig! Sie müssen gleichgroß sein, so dass wir sie vergleichen können. Vier Fünftel markiert eine größere Fläche als drei Viertel, also sind drei Viertel kleiner als vier Fünftel.

Unter den Deutschen gibt es demnach angeblich mehr Ja-Sager als Gutgelaunte. Na, da schließen wir uns am liebsten beiden Gruppen an: Wir sagen Ja zur Mathematik, das sorgt für gute Laune und wir sind glücklich. :-) Tschüss.

Informationen zum Video
4 Kommentare
  1. 0285ml baerchenglas

    .
    .
    .
    .
    .
    .
    .
    .

    .
    .
    .
    .
    .
    .
    .danke
    .
    .
    .
    .
    .
    .
    ..
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .

    Von Christopher S., vor mehr als einem Jahr
  2. Default

    O.K

    Von Behrad R., vor fast 2 Jahren
  3. Default

    Hat mir sehr geholfen :D -_-

    Von Khujanov, vor fast 2 Jahren
  4. Default

    Wahr sehr nützlich

    Von Sophia W., vor mehr als 2 Jahren