Advent, Advent, 1 Monat weihnachtliche Laufzeit geschenkt.

Nicht bis zur Bescherung warten, Aktion nur gültig bis zum 18.12.2016!

Textversion des Videos

Transkript Größenvergleich bei Brüchen – Übung

Hallo und herzlich willkommen. Dieses Video zeigt dir einige Übungen zum Größenvergleich von Brüchen. Dafür stehen dir diese drei Methoden zur Verfügung:

  • Die anschauliche Streifenmethode,
  • der Vergleich durch Erweitern
  • und Anordnung von Brüchen auf dem Zahlenstrahl.

Alle Methode werden in diesem Video geübt. Wir wollen auch gar nicht viel Zeit verlieren und steigen direkt in die Übungen ein.

Übung 1: Streifenmethode

Beginnen wir mit der Streifenmethode.

Welcher Bruch ist größer, sieben Neuntel oder fünf Sechstel? Unser Hilfsmittel ist dieser Streifen: er stellt das Ganze dar.

Um aus ihm einen Neuntel-Streifen zu machen, teilen wir ihn in neun gleich große Teile. Sieben Neuntel sind sieben Teile davon, also dieser Anteil.

Nun nehmen wir einen gleichgroßen Streifen und markieren darauf die Brüche mit dem Nenner 6, d.h. wir teilen ihn in sechs Teile. Fünf Sechstel sind diese fünf Teile.

Jetzt legen wir die zwei Streifen nebeneinander und vergleichen. Der Streifenanteil fünf Sechstel ist eindeutig länger als der von sieben Neuntel. Das bedeutet: fünf Sechstel ist größer als sieben Neuntel.

Übung 2: Streifenmethode

Auf welchem Teller ist der Anteil roter Gummibärchen größer?

Auf dem ersten Teller sind 11 Gummibärchen, also brauchen wir einen Elfer-Bruchstreifen. 5 Bärchen sind rot, ihr Anteil ist fünf Elftel. Das ist dieser Anteil.

Auf dem zweiten Teller beträgt der Rot-Anteil vier von sieben Bärchen, also vier Siebtel. Vier Siebtel auf dem Siebener-Bruchstreifen sind dieser Anteil.

Der Vergleich beider Streifen zeigt: Auf dem zweiten Teller ist der Rot-Anteil größer, denn vier Siebtel sind größer als 5 Elftel.

Guten Appetit!

Übung 3: Erweitern von Brüchen

Die Streifenmethode ist anschaulich, aber natürlich ein wenig umständlich. Ans Ziel kommst du auch mit der Methode des Erweiterns.

Ordne die folgenden Brüche der Größe nach: sieben Neuntel, dreizehn Achtzehntel; fünf Sechstel; drei Viertel. Hier musst du alle Brüche auf einen Hauptnenner erweitern. Aber welchen Nenner legen wir als Hauptnenner fest?

Achtzehn ist der größte Nenner, kommt als Hauptnenner jedoch nicht in Frage, da die vier nicht hinein passt. 36 passt aber, weil 9 mal vier = 36, 18 mal zwei gleich 36, 6 mal 6 gleich 36 und 4 mal 9 gleich 36.

Das sind demnach die Zahlen, mit denen du erweitern musst. Also erweitern wir: sieben Neuntel wird erweitert mit 4 zu 28 36stel, 13 Achtzehntel erweitert mit 2 wird zu 26 36stel. Fünf Sechstel erweitert mit 6 wird zu 30 36stel. Drei Viertel erweitert mit 9 wird zu 27 36stel.

Jetzt musst du nur noch die Zähler vergleichen und findest folgende Reihenfolge: Dreizehn Achtzehntel ist kleiner als drei Viertel ist kleiner als sieben Neuntel ist kleiner als fünf Sechstel.

Übung 4: Unechte Brüche

Übung 4 zeigt eine kleine Besonderheit: Welcher Bruch ist kleiner, vierzig Dreizehntel oder zwanzig Siebtel?

Hier hast du es mit unechten Brüchen zu tun! Unechte Brüche sind solche Brüche, bei denen der Zähler größer als der Nenner ist. In solchen Fällen ist es immer ratsam, sie zunächst als gemischte Zahlen zu schreiben.

So ist vierzig Dreizehntel gleich drei ein Dreizehntel und zwanzig Siebtel gleich zwei sechs Siebtel, d.h. der erste Bruch ist etwas größer als 3, der zweite etwas kleiner. In dieser Schreibweise siehst du sofort, dass zwanzig Siebtel kleiner als 40 Dreizehntel ist.

Übung 5: Zahlenstrahl

Jetzt wenden wir uns noch dem Zahlenstrahl zu. Brüche sind ja Zahlen, also kann man sie auf dem Zahlenstrahl finden und markieren.

Übung 5: Suche 5 Brüche, die zwischen zwei Fünftel und einhalb liegen. Beide Brüche liegen zwischen 0 und 1. Einhalb bildet die Mitte zwischen 0 und 1 und liegt hier.

Die Brüche mit dem Nenner fünf liegen bei den roten Teilstrichen, du kannst sie abzählen: ein Fünftel, zwei Fünftel, drei Fünftel, vier Fünftel. Die Brüche zwischen zwei Fünftel und ein halb liegen hier.

Um sie anzugeben, müssen wir zwei Fünftel und ein halb aber durch Erweitern auf eine gemeinsame Skala bringen, z.B. die zum Nenner zehn. Zwei Fünftel erweitert mit 2 ergibt vier Zehntel, einhalb erweitert mit 5 ergibt fünf Zehntel.

Zwischen 4 Zehntel und 5 Zehntel liegen keine weiteren Brüche mit dem Nenner 10. Also noch mal mit 10 erweitern, das sollte reichen: Vier Zehntel erweitert mit 10 ist 40 Hundertstel, fünf Zehntel mit zehn erweitert ist 50 Hundertstel.

Halten wir die Lupe auf den Zahlstrahl zwischen zwei Fünftel gleich 40 Hundertstel und einhalb gleich 50 Hundertstel, zählt jeder Teilstrich ein Hundertstel weiter.

Jetzt kannst du 5 Brüche angeben, zum Beispiel 42 Hundertstel, 44 Hundertstel, 45 Hundertstel, 46 Hundertstel, 48 Hundertstel. Oder als Dezimalzahlen: 0,42; 0,44; 0,45; 0,46; 0,48.

Brüche über Brüche. Jetzt bist du schon einen großen Schritt weiter und kannst Brüche miteinander vergleichen. Aber im Hinterkopf solltest du immer haben, wo Brüche eigentlich herkommen, nämlich von den Anteilen. Diese Vorstellung hilft dir immer wieder, Klarheit über das Rechnen mit Brüchen zu erlangen. Viel Spaß dabei! Tschüss!

Informationen zum Video
11 Kommentare
  1. Default

    passt scha

    Von Only Lara, vor 12 Monaten
  2. Default

    Hat mir sehr weiter geholfen Danke ! Mathe Team

    Von Roncevic, vor etwa einem Jahr
  3. Default

    Danke die Übungen waren leicht verständlich.;)

    Von Familiedamme@Mac.Com, vor fast 2 Jahren
  4. Default

    ich verstehe die Übung 3 nicht

    Von Mario Markovski, vor fast 2 Jahren
  5. Default

    ihr seid die besten mathe team

    Von Stefan Bohr 1, vor fast 2 Jahren
  1. Default

    hab ne eins merci

    Von Stefan Bohr 1, vor fast 2 Jahren
  2. Default

    boah ich hab bei diesem thema eine 1 bekommen danke spfatutur ihr seid die besten

    Von Jaspreetsingh, vor fast 2 Jahren
  3. Image

    Danke sehr

    Von Murat46, vor etwa 2 Jahren
  4. Default

    warum sagen Sie guten Appetit wenn ihnen di Gummibärchen gehören

    Von Fahdelhajby, vor etwa 2 Jahren
  5. Default

    gut erklärt

    ;)

    Von Maria T., vor etwa 2 Jahren
  6. Default

    GUT

    Von Inga Francke99, vor etwa 2 Jahren
Mehr Kommentare