Advent, Advent, 1 Monat weihnachtliche Laufzeit geschenkt.

Nicht bis zur Bescherung warten, Aktion nur gültig bis zum 18.12.2016!

Textversion des Videos

Transkript Schrödingergleichung und Potentialtopfmodell

Hallo und herzlich Willkommen zu Physik mit Kalle!

Wir beschäftigen uns heute aus der Atom- und Kernphysik mit der Schrödingergleichung. Die Schrödingergleichung ist mit ziemlicher Sicherheit das ekeligste Stück Physik, das ihr in eurer Schullaufbahn zu sehen bekommt. Seid also nicht verwundert, wenn ihr nicht gleich alles versteht. Ich empfehle euch auf jeden Fall, euch vorher die Videos über das quantenphysikalische Atommodell und die Wellenfunktionen anzusehen. Dann wollen wir mal.

Die Schrödingergleichung

Wir lernen heute, was die Schrödingergleichung ist, wie ihr Ansatz lautet und wie man ihre Lösungen findet. Die Schrödingergleichung wurde 1926 von Erwin Schrödinger, hier seht ihr ein Bild von ihm, aufgestellt. Sie beschreibt, wie sich der Quantenzustand eines physikalischen Systems mit der Zeit ändert. Mehr dazu gleich. Ihre Lösungen sind Wellenfunktionen. Um es genau zu sagen, sind es eigentlich die Wellenfunktionen, die beschreiben, wie sich der Quantenzustand eines Systems ändert und die Schrödingergleichung sagt, welchen Bedingungen diese Funktionen genügen müssen. Die Schrödingergleichung ist also eine Gleichung, die mir wieder eine Gleichung ausspuckt, nämlich die, die mein System beschreibt.

Der Eψ=Hψ Ansatz

Wie sieht denn aber nun diese Gleichung aus? Nach reiflicher Überlegung habe ich mich für den leichtesten Ansatz entschieden. Und der lautet: Eψ=Hψ. Dabei ist E die Gesamtenergie des von mir betrachteten Systems und H der sogenannte Hamiltonoperator, der mein System beschreibt. Damit ihr eine Vorstellung bekommt, wie das dann ausgeschrieben aussieht: E=ih(quer)×d/dt, also eine Ableitung nach der Zeit. Und der Hamiltonoperator H=h(quer)2/2m×(Nabla)2+V. Dieses auf dem Kopf stehende Dreieck, der Nabla-Operator, ist eine Ableitung nach dem Ort.

Insgesamt steht der 1. Teil des Hamilton-Operators für die kinetische Energie und das V für die wirkenden Potenziale. Und jetzt versteht ihr vielleicht, warum der Hamilton-Operator mein System beschreibt. Habe ich ein Teilchen, kenne seine kinetische Energie und alle auf es wirkenden Potenziale, dann habe ich alles, was ich benötige, um auszurechnen, was passiert. Die unter V zusammengefassten Potenziale können natürlich alles mögliche sein: Ein elektisches Feld, ein Gravitationsfeld oder ein sich mit der Zeit änderndes magnetisches Feld.

Die zeitunabhängige Schrödingergleichung

Wenn sich meine Potenziale aber nicht mit der Zeit ändern, also nicht von t abhängen, dann erhalte ich einen Sonderfall, die sogenannte zeitunabhängige Schrödingergleichung. Sie lautet: (h(quer)2/2m)×ψ''+(E-Epot)×ψ=0
Mit dieser Gleichung kann man nun also eine Wellenfunktion bestimmen, die die zeitliche Entwicklung meines Systems vollständig beschreibt. Dies kann man aber in den meisten Fällen sowieso nicht auf dem Papier oder mit dem Taschenrechner rechnen. Man braucht dafür Computer, die sogenannte numerische Lösungswege benutzen.

Eine Anwendung der Schrödingergleichung, die euch aber vielleicht auch in der Schule begegnen könnte, wollen wir uns nun im nächsten Kapitel ansehen. Wir erinnern uns: Die Lösungen der Schrödingergleichung beschreiben die Entwicklung von Quantenzuständen. Sie müssen allerdings auch vom System abhängige Randbedingungen erfüllen.

Der eindimensionale lineare Potenzialtopf

Als Beispiel wollen wir uns dafür einmal den eindimensionalen linearen Potenzialtopf ansehen. Wir betrachten einen Potenzialtopf der Länge L, für den gelten soll: Außerhalb des Topfes ist das Potenzial unendlich, innerhalb des Topfes ist es gleich 0. Da unser Teilchen sich natürlich nicht im Rand des Topfes aufhalten kann, gilt: Die Aufenthaltswahrscheinlichkeit |ψrand|^2=0.

Wie ihr euch wahrscheinlich schon denkt, kann man die Wellenfunktion des Teilchens, eine stehende Welle, gut mit einer Sinusfunktion beschreiben. Wichtig ist dabei nur, dass 2 Knotenpunkte, also 2 Nullstellen, am linken und am rechten Rand sein müssen. Wie ihr seht, kann ich dafür gleich verschiedene Lösungsvorschläge einzeichnen. Wir können also gleich einen Vorschlag für die Wellenfunktion angeben: ψ=A×sin(k×r) r ist der Ort und ich setze gleich einmal den Nullpunkt praktischerweise in den linken Rand meines Potenzialtopfes. Da ich am Ende des Topfes wieder eine Nullstelle haben muss, kann ich schreiben: sin(k×L)=0 Da der Abstand zwischen den Nullstellen der Sinusfunktion immer π beträgt, kann ich also sagen: k×L=n×π
Und das kann ich einfach umformen zu k=(n×π)/L des Potenzialtopfes.

Berechnung der Energieniveaus

Man könnte nun mit Hilfe der Schrödingergleichung beweisen, dass das ψ, das wir vorgeschlagen haben, eine korrekte Lösung ist und mein System richtig beschreibt. Das wollen wir hier aber nicht tun. Wir wollen statt dessen die Energieniveaus für die verschiedenen n-Werte ausrechnen. Unsere zeitunabhängige Schrödingergleichung lautete: (h(quer)2/2m)×ψ''+(E-Epot)×ψ=0 Da wir ja gesagt hatten, im Potenzialtopf soll v'=0 sein, ist die potenzielle Energie also gleich 0. Und damit wir sie fürs Einsetzen gleich richtig dastehen haben, wollen wir noch kurz ψ und die 2. Ableitung von ψ aufschreiben: ψ=A×sin((n×π)/L×r) und ψ''=A×(-sin((n×π)/L×r))×(n2×π2)/L2 So, dann machen wir kurz oben sauber und dann können wir unsere Rechnung schon zu Ende bringen. Wir setzen ein. ψ'' hat ein Minus als Vorzeichen und kommt daher auf die andere Seite des Istgleich-Zeichens. Und so erhalten wir: h(quer)2/2m×A×(n2×π2)/L2×sin((n×π)/L×r)=Eges×A×sin((n×π)/L×r) Wir klammern die Sinusfunktion aus und erhalten: A×sin((n×π)/L×r)=(h(quer)2/2m×(n2×π2)/L2-Eges)=0 Damit das erfüllt ist, muss, da der Sinus nicht immer 0 ist, unser Term in der Klammer immer 0 sein. Und damit rechnen wir weiter. Dieser Term ist nämlich immer dann 0, wenn: Eges=h(quer)2/2m×(n2×π2)/L2

Und damit sind wir auch schon fast am Ende. Mit h(quer)=h/2π können wir das Ganze noch ein wenig vereinfachen. Heraus kommt dann, die Energie ist gleich h2/(8m×L2)×n2. Wir erinnern uns an vorhin. Je größer das n ist, desto kleiner ist Wellenlänge unserer stehenden Welle. Und an dieser Formel können wir sehen, je kleiner unsere Wellenlänge ist, desto höher ist unsere Energie. Diese steigt nämlich nicht nur mit n, sondern sogar mit n2.

Zusammenfassung

Wir wollen noch einmal wiederholen, was wir heute gelernt haben. Mit Hilfe der Schrödingergleichung lassen sich die Wellenfunktionen ψ finden, die die Zustandsänderungen eines System beschreiben.

Die einfachste Form der Schrödingergleichung lautet: Eψ=Hψ. Dabei ist E der Energieoperator und H der Hamiltonoperator. Ändert sich das Potenzial V im Hamiltonoperator mit der Zeit nicht, so kann man die sogenannte zeitunabhängige Schrödingergleichung verwenden. Diese lautet: (h(quer)2/2m)×ψ''+(E-Epot)×ψ=0

So, das war es schon wieder für heute. Ich hoffe, ich konnte euch helfen. Vielen Dank fürs Zuschauen. Vielleicht bis zum nächsten Mal. Euer Kalle

Informationen zum Video
2 Kommentare
  1. Default

    ich mag Sie wegen ihnen hab ich mein Abi geschaft (Ph LK)

    Von Sahibsahib, vor etwa einem Jahr
  2. Default

    Eine Aufgabe aus Physik LK aus dem Physikbuch Metzler Physik, Metzler Verlag: Berechnen Sie die Ergebnisse des dritten Iterationsschritts fuer E= 1x10^-18 J

    Von Christianeseddon, vor fast 2 Jahren