Textversion des Videos

Transkript Kinetische Gastheorie

Hallo und willkommen beim Lernvideo zur Grundgleichung der kinetischen Gastheorie. Unser weitläufiges Ziel wird es sein, diese Grundgleichung herzuleiten und in ihrer Anwendung zu proben. Denn mit ihrer Hilfe ist es möglich, Teilcheneigenschaften mit makroskopischen Größen, wie Druck oder Volumen, zu verknüpfen. Ihr solltet vorweg schon etwas über die Grundgrößen Druck, Volumen und Temperatur von idealen Gasen wissen. Wir werden anfangs noch einmal kurz erläutern, was der Bereich der der kinetischen Gastheorie überhaupt beschreibt und wie er sich abgrenzt. Danach werden wir auf die Herleitung der Grundgleichung kommen und diese langsam aus elementarem Teilchenverhalten entwickeln. Als letzten Punkt werden wir diese Formel an einigen Beispielen anwenden, um so die Einfachheit und Tragweite dieser Gleichung zu verdeutlichen. Allgemein kann man die kinetische Gastheorie als Beschreibungsmethode idealer Gase im Teilchenmodell deuten. Sie versucht, das Gas hierbei insbesondere durch die Bewegungseigenschaften der mikroskopischen Teilchen zu beschreiben. Das heißt, dass sie das Verhalten und den Zustand eines idealen Gases durch Teilcheneigenschaften, wie Geschwindigkeit, Anzahl und kinetische Energie, beschreibt. Sie unterliegt somit den Prinzipien idealer Gase, also punktförmigen Teilchen, die lediglich durch elastische Stöße untereinander und mit den Gefäßwänden interagieren. Da sich in einem Gasvolumen eine ungeheuer riesige Anzahl an Teilchen befindet, kann man über die kinetische Gastheorie keine Aussage zu einzelnen Teilchen treffen, sondern lediglich grobe Abschätzungen zu Mittelwerten und zur breiten Masse angeben. Sie zählt deswegen zu den statistischen Theorien. Oft nennt man diese Theorie deswegen auch kinetisch-statistische Gastheorie. Kommen wir nun zu unserem Hauptpunkt, der Herleitung der Grundgleichung. Als Ausgangspunkt denken wir uns eine gewisse Gasmenge, die aus N-Teilchen bestehen soll und das Volumen V einnimmt. Aus diesem Gasvolumen betrachten wir nun gesondert einen kleinen Quader. Die Scheitelfläche des Quaders soll A betragen. Sie ist im Grunde unwichtig und wird später herausfallen. Die Länge des Quaders hingegen ist von großer Bedeutung. Wir nennen sie deswegen vorerst s. Da unser Gas eine endliche Temperatur über dem absoluten Nullpunkt hat, bewegen sich die Gasteilchen. Hierdurch kann man eine mittlere Durchschnittsgeschwindigkeit festlegen, die wir mit v(gemittelt) bezeichnen. Mithilfe dieser gemittelten Geschwindigkeit können wir unsere Quaderlänge s etwas umschreiben. Wir legen s genau so lang fest, wie ein Teilchen in einem kurzen, aber beliebigen Zeitintervall Δt zurücklegt. Es gilt also: s=v(gemittelt)×Δt. Nun versuchen wir, die Teilchenanzahl n in unserem Quader zu berechnen. Hierzu benötigen wir einmal das Volumen unseres Quaders, also seine Scheitelfläche A × seine Länge v(gemittelt)×Δt, zum anderen brauchen wir die Teilchendichte in unserem Volumen V. Da sich das Gas im thermischen Gleichgewicht befinden soll und die Teilchenanzahl sehr groß ist, kann man die Dichte als konstant annehmen. Es befinden sich also überall in unserem Gas ungefähr gleich viele Teilchen pro Volumenstück. Diese Dichte ρ kann man über ρ=N/V ausdrücken, da sich ja N-Teilchen in unserem Volumen V befinden. Alles zusammen ergibt sich eine Teilchenzahl n in unserem Quader von N/V×A×v(gemittelt)×Δt. Mit dieser Formel haben wir schon einmal einen großen Schritt hinter uns. Nun schauen wir uns die Impulse dieser Teilchen an, die sie durch Stöße an den Wänden übertragen. Allgemein gilt für den Teilchenimpuls p=m×v, also Teilchenmasse mal dessen Geschwindigkeit. Bei einem vollkommen elastischen Stoß prallen die Teilchen von der Wand ab und fliegen in der entgegengesetzten Richtung mit sonst gleichem Impuls weiter. Ihr Impuls ändert sich also von m×v zu -m×v  bzw. die Änderung beträgt 2×m×v. Wir verwenden nun auch wieder die gemittelte Geschwindigkeit, da sich generell alle Teilchen mit anderen Geschwindigkeiten bewegen können. Genau dieser Impuls wird nun aufgrund der Impulserhaltung auf die Wand übertragen. Da dies für jedes Teilchen gilt, müssen wir diesen Impulsübertrag noch mit der Teilchenanzahl multiplizieren, die sich auf die Wand zubewegt. Da unser Quader 6 Seiten hat und sich die Teilchen ungerichtet bewegen, sind dies genau 1/6 der Gesamtteilchen im Quader. Die Impulsdifferenz, die die Teilchen auf die Wand übertragen, ist somit: Δp=1/6×N/V×A×v(gemittelt)×Δt×2×m×v(gemittelt). Oder etwas vereinfacht: Δp=1/3×N/V×A×v(gemittelt)2×m×Δt. Allgemein ergibt sich eine konstante Kraft laut Newton zu F=Δp/Δt. Δt kürzt sich also heraus und die Kraft auf die Wand der Fläche A ist somit: F=1/3×N/V×A×v(gemittelt)2×m. Diese Kraft ist es nun, die den Gasdruck erklärt. Die Stöße der Teilchen gegen die Wand drücken diese nach hinten, und das nehmen wir als Druck wahr. Der Druck ergibt sich allgemein als Kraft pro Fläche, also p=F/A. An dieser Stelle kürzt sich also auch unsere Fläche der Wand weg. Unser Druck ist nun: p=1/3×N/V×v(gemittelt)2×m. Eigentlich sind wir hiermit am Ziel angelangt. Es werden jedoch oft ein paar kleine Änderungen vorgenommen, um die Form dieser Gleichung etwas zu vereinfachen. Als Erstes wird angenommen, dass das Quadrat der gemittelten Geschwindigkeit ungefähr dem Mittel der quadratischen Geschwindigkeit entspricht, da unser Gas ja im thermischen Gleichgewicht vorliegt und alle Teilchen nahezu dieselbe Geschwindigkeit haben sollen. Multipliziert man dann noch beide Seiten mit dem Volumen V, so ergibt sich: p×V=1/3×N×m×v2(gemittelt). Dies ist nun die 1. Form der Grundgleichung der kinetischen Gastheorie. Sie setzt die Masse, Anzahl und Geschwindigkeit der mikroskopischen Gasteilchen mit makroskopischen Größen, wie Druck und Volumen, in Verbindung.  Meistens wird jedoch die kinetische Energie benutzt, um die 2. Form der Grundgleichung zu erhalten. Es gilt die allgemeine Beziehung Ekin=½×m×v2. Nach der Umformung sieht sie folgendermaßen aus: p×V=2/3×N×Ekin(gemittelt). Hierbei ist Ekin(gemittelt) die durchschnittliche Bewegungsenergie der Gasteilchen. N×Ekin(gemittelt) ist also die Gesamtenergie unseres Gases. Da die rechte Seite der Grundgleichung genau wie die Zustandsformel idealer Gase aussieht, kann man diese beiden gleichsetzen. Dadurch erhält man nun die fundamentale Beziehung: kb×T=1/3×m×v2(gemittelt), wobei kb wieder die Boltzmann-Konstante ist. Diese Gleichung sagt nun eindeutig aus, dass die Temperatur eines Gases lediglich ein Maß für die Bewegungsstärke der Teilchen ist. Damit haben wir alle 3 Formen der Grundgleichung erhalten. Mit der endgültigen Form der Grundgleichung können wir uns nun 2 kurzen Beispielen zuwenden. Unser 1. Ziel soll es sein, die durchschnittliche kinetische Energie von Wasserstoffteilchen unter Normalbedingungen zu berechnen. Dafür werden wir natürlich die 2. Form der Grundgleichung benutzen bzw. die nach der gemittelten Energie umgestellte Form. Sie lautet: Ekin(gemittelt)=3/2×P×V/N. Der Faktor V/N ist hierbei der Kehrwert der Teilchendichte, also der Anzahl an Teilchen pro Volumeneinheit. Dieser beträgt für Wasserstoff ca. 5,36×1022 Teilchen/m³. Der Kehrwert, also 1 / diese angegebene Teilchendichte, beträgt ungefähr 1,87×10^-23m³ pro Teilchen. Als Druck nehmen wir den Normaldruck von ca. 100.000 Pa (Pascal) an. Dieses setzen wir nun in die Grundgleichung ein. Wir erhalten als mittlere kinetische Energie einen Wert von 2,8×10^-18J (Joule). Mit dieser Energie könnte man bei Weitem nicht einmal einen Wassertropfen auch nur 1mm hochheben. Doch für Atome oder Moleküle reicht diese Bewegungsenergie aus, um ihnen eine enorme Geschwindigkeit zu verleihen. Als Nächstes wollen wir also die durchschnittliche Geschwindigkeit von Sauerstoffteilchen unter Normalbedingungen berechnen, das bedeutet, bei einer Temperatur von 20°C, also 293K (Kelvin). Hier werden wir die fundamentale Beziehung der kinetischen Energie kb×T=1/3×m×v2(gemittelt) benutzen. Umgestellt ergibt sich die simple Formel \sqrt(3×kb/m×T)=v(gemittelt). Die Teilchenmasse eines Sauerstoffmoleküls beträgt ca. 2,6×10^-26kg. Nach dem Einsetzen der Werte erhalten wir als durchschnittliche Geschwindigkeit unserer Sauerstoffteilchen ca. 683m/s. Das bedeutet, dass diese Teilchen mit 2-facher Schallgeschwindigkeit durch die Welt rasen. Das ist so schnell wie ein Düsenjet. Und trotzdem bemerken wir die Luft um uns herum meist gar nicht. Ich hoffe, ihr hattet Spaß beim Zusehen. Euer Philip Physik

Informationen zum Video
1 Kommentar
  1. Default

    Leider schon in der 9. Klasse bei uns.

    Von Santhosh, vor etwa 4 Jahren