Textversion des Videos

Transkript Beugung und Interferenz

Hallo und herzlich willkommen bei Physik mit Kalle. Wir machen heute aus dem Bereich: Schwingungen und Wellen - Beugung und Interferenz Für dieses Video solltet ihr bereits den Film zum huygensschen Prinzip gesehen haben. Wir lernen heute: Was Beugung bzw. Interferenz ist? Wie ich mir Beugung am Einzelspalt mit dem huygensschen Prinzip erklären kann? und Wie das Interferenzmuster eines Doppelspaltes aussieht? Unter Beugung versteht man die Ausbreitung einer Welle in den Schatten eines Hindernisses. Diese Ausbreitung können wir mit dem huygensschen Prinzip erklären, und sie kann außerdem Interferenzmuster verursachen. Deshalb wollen wir wissen, was Interferenz ist. Von Interferenz spricht man, wenn sich zwei oder mehr Wellen überlagern. Dies kann zu einer Vergrößerung oder Auslöschung der Amplitude führen. Man nennt das auch konstruktive bzw. destruktive Interferenz. Stellen wir uns vor, wir richten eine Taschenlampe auf einen sehr schmalen Spalt, zum Beispiel über einem Stück Karton. Wir erwarten an der Wand einen Lichtstreifen zu sehen, der genauso schmal ist, wie unser Spalt. Stattdessen sehen wir aber eher so ein Bild. Ich erhalte also nicht nur ein sehr ungenaues Bild meines Lichtstreifens, sondern dazu auch noch zwei weniger helle Lichtstreifen links und rechts davon. Warum mein Abbild so ungenau ist, lässt sich gut mit Hilfe des huygensschen Prinzipes erklären. Wir können uns vorstellen, das Licht dargestellt als ebene Wellenfront, trifft unseren Einzelspalt. Nach dem huygensschen Prinzip ist nun jeder Punkt auf dieser Wellenfront im Spalt ein Ursprung für eine Elementarwelle, die sich halbkugelförmig ausbreitet. Diese Ausbreitung können wir uns ungefähr so vorstellen: Wir erhalten nach dem Spalt zwar immer noch eine ebene Wellenfront, die sozusagen dem Anteil des ungebeugten Lichtes entspricht, aber alle unsere Elementarwellen breiten sich halbkugelförmig im Raum, hinter dem Spalt aus. Das heißt: Wir werden an der Wand einen unscharfen Streifen erhalten und genau diesen sehen wir. Die beiden weniger hellen Streifen, links und rechts entstehen nun aus Interferenz unserer halbkugelförmigen Wellen untereinander. Wie das funktioniert, wollen wir uns im nächsten Kapitel ansehen. Für das erste merken wir uns: Je größer der Spalt ist, desto mehr ungebeugtes Licht kann ich im Vergleich zum gebeugten Licht sehen, andersherum gesprochen, je kleiner mein Spalt ist, desto stärker werden die Beugungseffekte sichtbar. Ist die Öffnung, an der gebeugt wird, deutlich kleiner, als die Wellenlänge des verwendeten Lichtes, so kann ich sagen,  eine schlitzförmige Öffnung erzeugt hinter dem Spalt zylinderförmige Wellen und an einer punktförmigen Öffnung entsteht durch Beugungseffekte eine Kugelwellenquelle. Im nächsten Kapitel wollen wir uns ansehen, wie man zwei solche schmalen Schlitze, den sogenannten Doppelspalt einsetzen kann, um ein deutliches Interferenzmuster zu beobachten. Der Aufbau des Doppelspaltexperiments, das erstmals 1802 von Toms Young durchgeführt wurde, ist eigentlich relativ einfach. Ich brauche eine Lichtquelle, die mir möglichst monochromatisches und kohärentes Licht liefert. Monochromatisch bedeutet einfarbig und heißt, dass das Licht nur eine bestimmte Wellenlänge hat. Kohärent kommt vom lateinischen cohaerere, was so viel, wie zusammenhängend bedeutet und heißt, dass das Licht eine feste Phasenbeziehung hat oder ordentlich schwingt und möglichst nicht so oft aus dem Takt kommt. Das brauche ich, damit das Licht überhaupt interferenzfähig ist. Nun stelle ich in einiger Entfernung eine Blende auf, in der sich zwei, sehr schmale, parallele Schlitze befinden, die zueinander den Abstand "a" haben. Nun kann ich im Abstand "d" hinter dem Doppelspalt einen Schirm aufstellen und das Interferenzmuster betrachten. Im Bild seht ihr "rot" eingezeichnet ein solches Doppelspalt Interferenzmuster. Die Intensität der Lichtstreifen auf dem Schirm ist dabei gegen den Winkel aufgetragen. Wie ihr seht, gibt es mehrere Lichtstreifen, den hellsten davon direkt in der Mitte des Schirms. Man nennt diese die Intensitätsmaxima oder einfach nur die Maxima und damit man nicht durcheinander kommt, zählt man von der Mitte aus. Der helle Streifen in der Mitte ist also das Maximum null-ter Ordnung, der links und rechts daneben sind die beiden Maxima erster Ordnung und so weiter. Dazwischen gibt es Stellen, an denen die Intensität auf Null sinkt, diese nennt man die Intensitätsminima oder einfach nur Minima. Das Beugungsmuster unseres Einzelspaltes von gerade eben ist "blau" zum Vergleich eingezeichnet, und wie ihr seht, ergeben sich für den Doppelspalt viel deutlichere Interferenzmuster. Woran das liegt, wollen wir uns an der Skizze unseres Versuchsaufbaues ansehen. Wir nehmen an, dass unsere beiden Spalte so dünn sind, dass in jedem genau, eine Zylinderwelle entsteht. In der Skizze ist der Strahlengang von beiden Spalten zu einem bestimmten Punkt auf dem Schirm aufgezeichnet. Da der Weg zu diesem Punkt von beiden Spalten aus allerdings nicht gleich groß ist, gibt es einen gewissen Gangunterschied zwischen den Wellen. Das heißt: Die eine muss einen längeren Weg zurücklegen, als die andere. Daher kommen die beiden Wellen mit einer Phasendifferenz am Schirm an und von dieser Phasendifferenz hängt es ab, ob ich ein Maximum, ein Minimum oder irgendetwas dazwischen erhalte. Wir wollen uns noch einmal kurz die beiden Extremfälle genauer ansehen, damit wir herausfinden, für welchen Gangunterschied Maxima und Minima entstehen. Wir fangen an mit konstruktiver Interferenz. Wenn sich meine beiden Wellen so überlagern, dass ein Wellenberg der ersten immer auf einen Wellenberg der zweiten und ein Wellental der ersten immer auf ein Wellental der zweiten trifft, so habe ich den maximalen Verstärkungseffekt erreicht. Dies ist die Bedingung für ein Intensitätsmaximum. Wie ihr seht, muss der Gangunterschied zwischen den beiden Wellen dafür Null sein, dass ist der dicke Streifen in der Mitte oder einmal die Wellenlänge, zweimal die Wellenlänge, dreimal die Wellenlänge und so weiter. Also ein ganzteiliges Vielfaches von Lambda. Der zweite Fall ist die destruktive Interferenz: Wenn sich die beiden Wellen so überlagern, dass ein Wellenberg der ersten immer auf ein Wellental der zweiten trifft, so erhalte ich eine Gesamtintensität von Null, und dies ist dann die Intensitätsminimum auf dem Schirm. Dafür muss der Gangunterschied den Wellen -Lambda-halbe- sein oder Lambda plus Lambda -halbe-, zwei Lambda plus Lambda -halbe- und so weiter. Anders gesagt 2n minus1 mal Lambda -halbe-. Man kann sich das Ganze gut vorstellen, wenn die Originalskizze von Young zu diesem Versuch betrachtet. Unsere beiden Spalten sind hier mit "A" und "B" gekennzeichnet. Die Wellenberge werden durch drei schwarze Striche symbolisiert, die Wellentäler sind weiß. Die Linien, auf denen die Wellenberge der einen Welle die Wellentäler der anderen treffen, sind im Bild eingezeichnet. Dies sind die Intensitätsminima. Nun wollen wir die Formel für den Abstand "x" der Maxima und Minima auf dem Schirm herleiten.  Wir notieren: Ich erhalte das Maximum n-te Ordnung für den Gangunterschied δ(delta)s= nΛ(lambda) und das Minimum n-te Ordnung für den Gangunterschied δ(delta)s = 2n-1×Λ/2. Unsere Skizze des Versuches ist nicht ganz realitätsgetreu, damit man auch sehen kann, mit was man rechnet. In Wirklichkeit sieht das Ganze eher so aus. Wie ihr seht, ist der Abstand "d" des Schirmes viel größer als "x", der Abstand der Spaltmitten "a" ist noch viel, viel kleiner als "x" und deswegen kann ich die beiden Teilstrahlen als ungefähr parallel ansehen. Als erstes kann ich in diesem rechtwinkligen Dreieck festhalten, dass Verhältnis von "x" zu "d" ist, Tangens "α". Als zweites notiere ich mir, seht euch das Dreieck links am Doppelspalt an, der Gangunterschied "delta" "s" ist gleich "a" mal "sinus""α" strich, und da meine beiden Strahlen als parallel angesehen werden können, ist das gleich a×sin.α (α). Da ich hier sehr kleine Winkel "α" betrachte, darf ich die sogenannte Kleinwinkelnäherung verwenden. Wie ihr wisst, ist Tangens"α" gleich Sinus"α" durch Cosinus"α". Für sehr kleine Winkel, also nahe an Null, ist Cosinus"α" ungefähr gleich 1 und damit darf ich schreiben sinα=tanα. Damit darf ich in den beiden Formeln von oben Sinus"α" mit Tangens"α" gleichsetzen und erhalte: x/d=δ(delta)s/a. Nun muß ich nur noch die Formeln für "delta" "s" von oben einsetzen und nach "x" auflösen. Ich erhalte ein Maximum, finde ich, bei x=n×Λd/a. Für das Minimum gilt: x=2n-1×Λ×d/2a. Wir merken uns: Man findet auf dem Schirm ein Identitätsmaximum, wenn der Gangunterschied zwischen denen von A und B ausgesandten Wellen ein Vielfaches der Wellenlänge ist. Das n-te Maximum bzw. Minimum kann ich mit folgenden Formeln berechnen: Die Entfernung "x" von der Mitte des Schirms, bei der sich das n-te Maximum befindet, ist "n" mal die Wellenlänge "lambda" mal den Abspand des Doppelspaltes vom Schirm "d" geteilt durch den Spaltabstand "a". Wir überprüfen schnell, das Maximum null-ter Ordnung ist immer in der Mitte zwischen den beiden Spalten, und wenn ich für "n" gleich null einsetze, erhalte ich auch für "x" max. von Null gleich Null - stimmt also! Der Abstand "x" von der Mitte des Schirms für das Minimum n-ter Ordnung ist, 2n-1 in Klammern mal "lambda" mal "d" durch 2a. In beiden Formeln steht "d" für den Abstand zwischen Schirm und Doppelspalt und "a" für den Spaltabstand, dieser wird jeweils von der Mitte des Spaltes aus gemessen. Wir wollen noch einmal wiederholen, was wir heute gelernt haben: Beugung nennt man die Ausbreitung einer Welle in den Schatten eines Hindernisses und Interferenz ist die Überlagerung von zwei oder mehr Wellen. Je kleiner die Öffnung ist, an der gebeugt wird, umso stärker sind die Beugungseffekte sichtbar. Das Interferenzmuster am Doppelspalt zeigt mehrere Maxima und Minima. Ich kann die Orte dieser Maxima und Minima mit folgenden Formeln berechnen: Der Abstand von der Mitte des Schirms für das Maximum n-ter Ordnung ist: n×Λ×d/a Der Abstand für das Minimum n-ter Ordnung ist: (2n-1)×Λ×d/2a. Das war es für heute. Ich hoffe, ich konnte euch helfen. Vielen Dank für das Zuschauen. Euer Kalle.

Informationen zum Video
9 Kommentare
  1. Maximilian

    @Mathias Meyer:
    Sehr gut beobachtet!
    Also prinzipiell haben die beiden Terme (2n-1)/2 und (2n+1)/2 den Sinn, dass egal welche ganze Zahl man für n einsetzt, es kommt immer eine Zahl mit ,5 am Ende raus. Also 0,5 ; 1,5 ; 2,5 usw.

    Jetzt stellt sich nur die Frage, was sinnvoller für das Zählen ist. Für n=0, also die Nullte Ordnung, kommt beim Term (2*0-1)/2 ja der Wert -0,5 raus. Beim Term (2*0+1)/2 ist das Ergebnis dagegen +0,5.

    Du hast also recht: Der Term (2n+1)/2 , so wie er auch in deinem Buch steht, ist sinnvoller!
    Übringes: Ich schreibe lieber "n+1/2". Das ist genau das gleiche, aber nicht so kompliziert geschrieben.

    Grüße,
    Max

    Von Maximilian T., vor mehr als 2 Jahren
  2. Default

    Ich habe eine Frage:
    Bei der Interferenz am Doppelspalt (9:31 min) steht in meiner Formelsammlung im Zähler in der Klammer 2n+1 statt 2n-1.
    Was ist nun richtig, denn da kommen beim ausrechnen ja unterschiedliche Werte heraus?
    MfG Mathias

    Von Mathias Meyer, vor mehr als 2 Jahren
  3. Default

    Kalle, deine Art zu erklären erinnert mich an meine Kindheit, als ich mir "Die Sendung mit der Maus" angeschaut habe. Und das ist als großes Lob zu verstehen, denn du erklärst Sachverhalte auf eine sehr leicht nachvollziehbare und verständlich Art, ohne dabei inhaltlich an Qualität zu verlieren. Weiter so!

    Von David&Aaron S., vor fast 3 Jahren
  4. Default

    Vielen Dank! Das Video hat mir sehr geholfen :)
    Außerdem finde ich den Enthusiasmus und die damit einhergehende Einfachheit genial.

    Von Eddy R., vor etwa 3 Jahren
  5. Default

    Ich liebe das am Ende "..Euer Kalle" :)

    Von Rustam Uzbaev, vor mehr als 3 Jahren
  1. Default

    wow..ich bin begeistert!!! Super Video!!!!!

    Von Zarif, vor mehr als 4 Jahren
  2. Default

    Vielen Dank!
    Das Video mit der Balmer-Serienformel sollten demnächst abgedreht werden, und ein Video mit Beispielaufgaben zu Interferenzversuchen (inklusive Gitter) ist schon unterwegs ... falls du bis dahin aber eilig was wissen willst kannst du mir auch gerne schreiben, sofern ich in der Lage bin helfe ich immer gerne!

    Von Jakob Köbner, vor mehr als 5 Jahren
  3. Default

    Ich hoffe Die gitterspektrenanalyse wird noch nachgereicht udndals bald auch das Bohrsche Atommodell vs. Balmer Formel.Aber ansonsten eine tolle Arbeit die du hier auf sofatutor leistet:)

    Gruß,
    Druwwl

    Von Druwwl, vor mehr als 5 Jahren
  4. Default

    tolles Viedo..!!!:)

    Von Druwwl, vor mehr als 5 Jahren
Mehr Kommentare