Bewegungen in s-t-Diagrammen und v-t-Diagrammen
Entdecke die Geheimnisse der Kinematik, das Studium der Bewegung von Körpern durch Zeit und Raum! Erfahre, wie Koordinatensysteme dazu beitragen, wichtige Aspekte wie Geschwindigkeit und Beschleunigung zu verstehen. Von Weg-Zeit-Diagrammen bis hin zu Geschwindigkeitsprofilen – alles wird klar und einfach erklärt. Interessiert? Mehr Details und praktische Beispiele warten auf dich im Text!

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Bewegungen in s-t-Diagrammen und v-t-Diagrammen
Bewegung und Koordinatensysteme
Wir wollen uns heute mit der Kinematik beschäftigen. Das Wort Kinematik stammt aus dem Altgriechischen und bedeutet Bewegung. Es beschreibt ein Teilgebiet der Physik, das sich mit der Bewegung von Körpern beschäftigt, indem es Zeit, Ort, Geschwindigkeit und Beschleunigung miteinander in einen Zusammenhang bringt. Ein wichtiges Instrument, um diese Zusammenhänge zu untersuchen, sind Koordinatensysteme. Je nachdem, welche Größen man betrachtet, unterscheidet man zwischen verschiedenen Diagrammtypen.
Das Weg-Zeit-Diagramm
In der Physik beschreibt man in einem Weg-Zeit-Diagramm den Zusammenhang zwischen Zeit und zurückgelegter Strecke. Auf der x‑Achse wird die Zeit angegeben, meistens in der Einheit Sekunden, die mit abgekürzt wird. Auf der y‑Achse wird die zurückgelegte Strecke , also der Weg, angegeben. Üblicherweise nutzt man hier die Einheit Meter, abgekürzt mit . Es ist wichtig, dass es sich um die zurückgelegte Strecke und nicht um den Ort oder den Abstand zu einem Bezugspunkt handelt. Bei einer gleichförmigen Kreisbewegung um einen festen Punkt nimmt beispielsweise die zurückgelegte Strecke linear mit der Zeit zu, obwohl der Körper immer wieder an seinen Ausgangspunkt zurückkehrt. Auch ein Auto, das in einer Zeit erst 20 Meter vorwärts und dann 20 Meter rückwärts fährt, legt eine Strecke von 40 Metern zurück, obwohl es am Ende wieder am gleichen Ort ist. Im Weg-Zeit-Diagramm wäre also der y‑Wert zum Zeitpunkt die Strecke .
Die Steigung des Weg-Zeit-Diagramms gibt an, welche Strecke in einer bestimmten Zeit zurückgelegt wird. Das ist genau die Definition für die Geschwindigkeit . Aufgrund der Abkürzungen Strecke und Zeit nennt man das Weg-Zeit-Diagramm auch s-t-Diagramm.
Das Ort-Zeit-Diagramm
Will man nicht nur die zurückgelegte Strecke untersuchen, sondern auch den Ort, nutzt man ein Ort-Zeit-Diagramm. Auf der x-Achse wird hier auch die Zeit angegeben, aber auf der y-Achse der Ort, an dem sich das Objekt gerade befindet. Wenn wir nur eine Dimension betrachten, können wir den Ort als Abstand zu einem Referenzpunkt beschreiben. Das könnte zum Beispiel die Höhe über dem Boden sein, wenn wir etwas senkrecht nach oben werfen und es auch senkrecht wieder nach unten fällt. Oder eben ein Auto, das gerade vorwärts und rückwärts fährt. Im Ort-Zeit-Diagramm wäre also der y-Wert zum Zeitpunkt für das vor- und zurückfahrende Auto . Beim Ort-Zeit-Diagramm spielt also die Richtung der Bewegung eine Rolle – in einer Dimension ändert sich zum Beispiel das Vorzeichen. Das Weg-Zeit-Diagramm ist deswegen auch ein Spezialfall des Ort-Zeit-Diagramms: Es wird nur der Betrag der Geschwindigkeit berücksichtigt. Die Steigung im Weg-Zeit-Diagramm ist also immer positiv oder null, während sie im Ort-Zeit-Diagramm auch negativ sein kann. Wenn die Bewegung nur in eine Richtung erfolgt, sich das Vorzeichen also nicht ändert, sind Weg-Zeit-Diagramm und Ort-Zeit-Diagramm daher äquivalent.
Das Geschwindigkeit-Zeit-Diagramm
Auch im Geschwindigkeit-Zeit-Diagramm wird auf der x-Achse die Zeit angegeben. Auf der y-Achse tragen wir die Geschwindigkeit des Objekts ein. Die Geschwindigkeit wird in der Physik meistens in Metern pro Sekunde, also , angegeben. Man kann also ablesen, welche Geschwindigkeit ein Objekt zu jedem Zeitpunkt seiner Bewegung hat. Das Diagramm gibt also die Steigung des Ort-Zeit-Diagramms wieder.
Aber auch die Steigung des Geschwindigkeit-Zeit-Diagramms hat eine physikalische Bedeutung. Sie zeigt, wie stark sich die Geschwindigkeit ändert: Je größer die Steigung, desto schneller ändert sich die Geschwindigkeit. Und diese Änderung entspricht gerade der Beschleunigung. Aufgrund der Abkürzungen für Geschwindigkeit und Zeit nennt man das Geschwindigkeit-Zeit-Diagramm auch v-t-Diagramm.
Beispiele
Um die Diagramme der Bewegung etwas anschaulicher zu machen, wollen wir zwei Beispiele betrachten.
Gleichförmige Bewegung
Wir betrachten ein Paket, das auf einem Förderband liegt, als Beispiel für eine gleichförmige Bewegung. Gleichförmig bedeutet, dass die Geschwindigkeit konstant ist. Schauen wir uns also an, wie man in diesem Fall ein Weg-Zeit-Diagramm erstellen kann.
Das Paket liegt zum Zeitpunkt am Anfang des Förderbandes. Diesen Punkt wählen wir als Bezugspunkt, dort ist also . Nach ist das Paket nach rechts gefahren. Im Koordinatensystem können wir dazu einen Punkt bei zeichnen. Nach weiteren ist das Paket auch weitere gefahren, da die Geschwindigkeit konstant ist. Wir können also einen Punkt bei einzeichnen. Wenn wir so weitermachen, können wir alle Punkte am Ende mit einer Geraden verbinden. Für diese Gerade gilt allgemein die Geradengleichung:
Das steht für die zurückgelegte Strecke zur Zeit , ist die Geschwindigkeit und die vor zurückgelegte Strecke. In unserem Fall ist . Wir erhalten dann das folgende Diagramm:
Die Geschwindigkeit entspricht der Steigung dieser Geraden und beträgt . Das Geschwindigkeitsdiagramm entspricht wieder der Geschwindigkeit und ist eine Konstante mit der Gleichung .
Du kannst aus dem v-t-Diagramm auch die Beschleunigung ablesen, denn die ist durch die Steigung gegeben. Diese ist bei einer Konstanten überall null. Das entspricht der Definition einer gleichförmigen Bewegung: Die Bewegung ist nicht beschleunigt.
Gleichmäßig beschleunigte Bewegung
Als zweites Beispiel betrachten wir eine gleichmäßig beschleunigte Bewegung. Gleichmäßig beschleunigt bedeutet, dass sich die Geschwindigkeit ändert, aber die Beschleunigung einen konstanten Wert hat. Das ist zum Beispiel der Fall, wenn wir einen Ball aus großer Höhe, zum Beispiel aus einem Hubschrauber, fallen lassen und den Luftwiderstand vernachlässigen. Wir gehen wie im ersten Beispiel vor und betrachten die zurückgelegte Strecke zu verschiedenen Zeitpunkten. Zum Zeitpunkt , an dem wir den Ball loslassen, befindet er sich noch am Ausgangspunkt, hat also noch keine Strecke zurückgelegt. Durch die Erdanziehung wird der Ball aber nach unten beschleunigt. Nach einer Zeit ist er um nach unten gefallen. Nach insgesamt hat er bereits zurückgelegt. Man sieht schon beim Einzeichnen, dass sich die Steigung zwischen den Punkten vergrößert hat – der Ball fällt immer schneller. Nach hat er bereits zurückgelegt. Die Form dieser Kurve nennt man eine Parabel und sie wird durch die folgende Gleichung beschrieben:
Das steht wieder für die zurückgelegte Strecke, steht für die Beschleunigung (hier die Erdbeschleunigung), für die Anfangsgeschwindigkeit und für die zum Zeitpunkt zurückgelegte Strecke. In unserem Beispiel sind und beide null.
Im Gegensatz zum Paket auf dem Laufband ändert sich in diesem Beispiel die Geschwindigkeit mit der Zeit. Deswegen zeigt auch das Geschwindigkeit-Zeit-Diagramm keine Konstante mehr, sondern eine ansteigende Gerade. Diese Gerade kann durch die folgende Geradengleichung beschrieben werden:
Hinweis zur Benennung der Diagramme
Üblicherweise werden Diagramme so benannt, dass die Größe, die auf der
In der Schule wird aber meist von
Transkript Bewegungen in s-t-Diagrammen und v-t-Diagrammen
Der hellgrüne Wagen startet, doch kurze Zeit später auch der dunkelgrüne: Eine Verfolgungsjagd Der dunkelgrüne ist schneller. Und es kommt zum CRASH!!!! O NOOOOO! Bestimmt sieht das jetzt so aus. Hä? Wieso fahren die einfach weiter? Dieses Video "Bewegungen in s-t-Diagrammen und v-t-Diagrammen" hat eine Antwort. Genau darum geht es in beiden Diagrammen – um Bewegungen. Und das macht sie so genial wie kompliziert! Eine Bewegung ist die Veränderung der Lage eines Körpers im RAUM und in der ZEIT! Die Zeit ermöglicht ja erst Veränderung. Wie hält man aber Veränderung in einer Zeichnung fest? Aus Mathe kennen wir Funktionsgraphen. In ihnen werden die Werte einer Funktion in Abhängigkeit einer Variablen x festgehalten. Für viele verschiedene x'e gibt es jeweils die zugehörigen Funktionswerte. Genau so gehen wir bei einem s-t-Diagramm vor, einem "Weg-Zeit-Diagramm". Die Variable, der wir einen Wert zuordnen, ist die Zeit. Demnach tragen wir die Zeit in der x-Achse auf. Nun ordnen wir verschiedenen ZeitPUNKTEN jeweils die Lage des Körpers zu. Dazu verwenden wir die y-Achse. Die Lage notieren wir als den Abstand von einem Bezugspunkt, der im Koordinatenursprung liegt. Das könnte die Startlinie, oder eine Bushaltestelle sein. Wir bezeichnen diesen Abstand vom Bezugspunkt mit s. Schon ohne Einheiten lassen sich dem Diagramm Informationen entnehmen! Was passiert hier zum Beispiel? Der Körper fährt durch die Berge! Nope, silly! Unser Diagramm gibt nur die Entfernung von einem bestimmten Punkt an – Informationen wie hoch und runter oder rechts und links ENTHÄLT es gar nicht. Was wir ablesen können, ist, dass sich der Körper zunächst eine Weile von seinem Startpunkt entfernt. Dann gibt es einen Zeitpunkt, an dem seine Entfernung vom Startpunkt nicht mehr zunimmt. In dem zeitlich darauf folgenden Teil nimmt seine Entfernung wieder ab! An einem bestimmten Zeitpunkt nimmt seine Entfernung dann nicht mehr ab. Dann entfernt sich der Körper wieder. Was bedeutet das nun? Was auch immer sich da bewegt, zunächst hat es sich vom Startpunkt entfernt, dann ist es STEHENGEBLIEBEN und wieder ein Stück umgekehrt, wieder STEHENGEBLIEBEN und dann wieder in die ursprüngliche Richtung weiter gegangen. Wir können aus dem Diagramm nicht schließen, ob es sich hierbei um einen Spaziergänger handelt, dem etwas runtergefallen ist, einer Fußballerin, die eine gegnerische Spielerin ausspielen möchte, oder eine unentschlossene canide Lebensform. Dabei würden Einheiten helfen. Wenn wir wissen, ob Kilometer oder Millimeter zurückgelegt werden, ob Sekunden oder Jahre vergehen, können wir das Diagramm besser interpretieren. Ebenfalls können wir aus dem Diagramm nicht schließen, ob sich die Person für den "kurzen Weg zurück" umgedreht hat oder nicht, oder ob Steigungen, Gefälle oder Abweichungen nach links oder rechts eine Rolle spielten. Der Körper ist zwei Mal stehen geblieben. Dazu muss er langsamer geworden sein. Können wir wenigstens DAS in dem Diagramm ablesen? Ja. Der Anstieg der Kurve ist vor dem Stillstand flacher geworden, dann sogar negativ und danach wieder steiler. Der Anstieg der Kurve im s-t-Diagramm, die Steigung, entspricht der GESCHWINDIGKEIT des Körpers! Jetzt schauen wir uns mal ein GESCHWINDIGKEIT-Zeit-Diagramm an. Wieder tragen wir die Zeit auf der x-Achse auf. Auf der y-Achse tragen wir aber nun die Geschwindigkeit v auf. Diesmal spendieren wir uns aber Einheiten. Für die Zeitachse nehmen wir Stunden. Für die Geschwindigkeit wählen wir Kilometer pro Stunde. Jetzt müssen wir noch die Achseneinteilung vornehmen. Sagen wir "ein Zentimeter entspricht einer halben Stunde" auf der t-Achse, und "zehn Kilometer pro Stunde" auf der v-Achse. Und jetzt betrachten wir die Bewegung eines Körpers. Da bewegt sich GAR NICHTS, der steht einfach. Keine Änderung der Entfernung vom Startpunkt. Nope, silly. Es ist ja kein s-t-Diagramm! Hier ist eben gerade NICHT die räumliche Entfernung von einem Startpunkt eingezeichnet, die sich über einen bestimmten Zeitraum nicht ändert, sondern eine Größe der Veränderung selbst – die GESCHWINDIGKEIT. Ein Fahrzeug fährt drei Stunden lang mit einer Geschwindigkeit von zwanzig Stundenkilometer. Könnten wir daraus ein s-t-Diagramm konstruieren? Wir kennen ja die Geschwindigkeit. Zwanzig Stundenkilometer, oder fachlich richtiger: Zwanzig Kilometer pro Stunde. Wir fertigen uns mal eine Wertetabelle an. Zum Zeitpunkt null soll das Fahrrad am Startpunkt sein. Nach einer Stunde ist es zwanzig Kilometer weit gekommen. Nach zwei Stunden demnach vierzig Kilometer und nach drei Stunden sechzig. Die Zwischenwerte können wir leicht eintragen. Jetzt können wir unsere s-Achse vervollständigen. Und Kreuze setzen. Alle Werte liegen auf einer Geraden. Sogar einer Ursprungsgeraden. Was bedeutet die Steigung dieser Geraden? Bestimmen wir sie. Dazu zeichnen wir ein Steigungsdreieck ein. Die Steigung m ist delta y durch delta x, in unserem Falle also zwanzig Kilometer durch eine Stunde. Die Steigung im s-t-Diagramm ist die Geschwindigkeit. Das wussten wir schon. Versteckt sich der Weg umgekehrt auch im v-t-Diagramm? Um den Weg zu ermitteln, haben wir die Geschwindigkeit mit der Zeit multipliziert. Nach drei Stunden hat das Fahrzeug sechzig Kilometer zurückgelegt. Das entspricht der Fläche unter dem Graphen. Und auch das gilt in jedem v-t-Diagramm: Die Fläche unter dem Graphen entspricht dem zurückgelegten Weg. Und was geht hier ab? Offenbar wächst die Geschwindigkeit des Körpers gleichmäßig mit der Zeit! Er wird BESCHLEUNIGT. Aber welchen Weg legt er dabei zurück? Hierbei handelt es sich um eine Ursprungsgerade, also um eine proportionale Zuordnung: v ist proportional zu t. Die Proportionalitätskonstante ist die Beschleunigung a. Betrachten wir die Bewegung bis zum Zeitpunkt t-eins. Dann hat der Körper die Geschwindigkeit v-eins. Die bis dahin zurückgelegte Strecke ist die Fläche unter dem Graphen. Die können wir berechnen. Das ist die Hälfte der Fläche des grau markierten Rechtecks. Also ist der zurückgelegte Weg s-eins gleich "ein Halb mal v-eins mal t-eins". Außerdem wissen wir, das v-eins gleich "a mal t-eins" ist. Dann ist s-eins gleich "ein Halb mal a mal t-eins mal t-eins" gleich "ein Halb mal a mal t-eins zum Quadrat". Bämmm. Damit haben wir mit ein bisschen Geometrie sogar noch das Weg-Zeit-Gesetz der beschleunigten Bewegung ermittelt. Das reicht. Und wir fassen zusammen. Im Weg-Zeit-Diagramm wird der Abstand eines Körpers von einem festgelegten Startpunkt dargestellt. Die Steigung im s-t-Diagramm ist an jedem Punkt die momentane Geschwindigkeit. Im v-t-Diagramm ist die Fläche unter der Kurve der zurückgelegte Weg. Damit ist das Rätsel um den vermeintlichen Crash geklärt. s gibt nur den Abstand vom Startpunkt an. Beide Fahrzeuge können gut auf zwei Fahrspuren unterwegs sein. Nur ein Überholvorgang.
Bewegungen in s-t-Diagrammen und v-t-Diagrammen Übung
-
Bestimme die richtigen Aussagen zu -- und --Diagrammen.
-
Beschreibe die Bewegungen, die durch das --Diagramm dargestellt werden.
-
Bestimme die Geschwindigkeit an den beiden Punkten aus dem --Diagramm.
-
Ordne die zusammengehörigen -- und --Diagramme zu.
-
Vervollständige die Zusammenfassung der wichtigsten Aussagen.
-
Ermittle, welche Strecke der Körper insgesamt zurückgelegt hat.
9.317
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.198
Lernvideos
38.693
Übungen
33.502
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Physik
- Temperatur
- Schallgeschwindigkeit
- Dichte
- Drehmoment
- Transistor
- Lichtgeschwindigkeit
- Elektrische Schaltungen – Übungen
- Galileo Galilei
- Rollen- Und Flaschenzüge Physik
- Radioaktivität
- Aufgaben zur Durchschnittsgeschwindigkeit
- Lorentzkraft
- Beschleunigung
- Gravitation
- Ebbe und Flut
- Hookesches Gesetz Und Federkraft
- Elektrische Stromstärke
- Elektrischer Strom Wirkung
- Reihenschaltung
- Ohmsches Gesetz
- Freier Fall
- Kernkraftwerk
- Was sind Atome
- Aggregatzustände
- Infrarot, Uv-Strahlung, Infrarot Uv Unterschied
- Isotope, Nuklide, Kernkräfte
- Transformator
- Lichtjahr
- Si-Einheiten
- Fata Morgana
- Gammastrahlung, Alphastrahlung, Betastrahlung
- Kohärenz Physik
- Mechanische Arbeit
- Schall
- Schall
- Elektrische Leistung
- Dichte Luft
- Ottomotor Aufbau
- Kernfusion
- Trägheitsmoment
- Heliozentrisches Weltbild
- Energieerhaltungssatz Fadenpendel
- Linsen Physik
- Ortsfaktor
- Interferenz
- Diode und Photodiode
- Wärmeströmung (Konvektion)
- Schwarzes Loch
- Frequenz Wellenlänge
- Elektrische Energie
Goldi Goldfisch ist cool
Super
Halli galli