Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Umfang von Dreiecken

Entdecke, wie du den Umfang von Dreiecken berechnest, egal ob es sich um ein allgemeines, rechtwinkliges, gleichschenkliges oder gleichseitiges Dreieck handelt. Interesse geweckt? Tauche ein in die faszinierende Welt der Dreiecke und prüfe dein Wissen mit unseren Übungen und Arbeitsblättern. Begleite König Triangulus bei seiner Mission rund um seine dreieckige Festung!

Inhaltsverzeichnis zum Thema Umfang von Dreiecken
Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Teste dein Wissen zum Thema Umfang von Dreiecken

Wie berechnet man den Umfang eines allgemeinen Dreiecks?

1/5
Bewertung

Ø 4.0 / 282 Bewertungen
Die Autor*innen
Avatar
Team Digital
Umfang von Dreiecken
lernst du in der 5. Klasse - 6. Klasse - 7. Klasse - 8. Klasse

Umfang von Dreiecken Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Umfang von Dreiecken kannst du es wiederholen und üben.
  • Tipps

    Der Umfang eines Dreiecks ist die Länge seiner Begrenzungslinie.

    Bei einem gleichseitigen Dreieck sind alle Seiten gleich lang.

    Lösung

    Diese Aussagen sind falsch:

    „Bei rechtwinkligen Dreiecken berechnet man den Umfang, indem man alle Seitenlängen multipliziert.“

    • Es ist egal, um welche Art von Dreieck es sich handelt. Du bestimmst den Umfang immer, indem du alle drei Seitenlängen des Dreiecks addierst.
    „Bei gleichschenkligen Dreiecken sind alle drei Seiten gleich lang.“

    • Bei dieser Art von Dreiecken sind zwei Seiten gleich lang.
    Diese Aussagen sind richtig:

    „Die Eckpunkte eines Dreiecks werden mit Großbuchstaben, zum Beispiel $A$, $B$ und $C$, beschriftet. “

    • So werden die Eckpunkte eines Dreiecks üblicherweise bezeichnet.
    „Der Umfang eines Dreiecks ist die Summe aller drei Seitenlängen $a$, $b$ und $c$.“

    „Bei einem gleichseitigen Dreieck muss nur eine Seitenlänge bekannt sein, um den Umfang zu bestimmen.“

    • Da bei einem gleichseitigen Dreieck alle Seitenlängen gleich lang sind, muss nur eine der Seitenlängen bekannt sein. Die anderen Seiten sind gleich lang.
  • Tipps

    Der Umfang einer Fläche ist die Länge der Begrenzungslinie. Ein Dreieck wird durch drei Seitenlängen begrenzt.

    In dem hier gezeigten gleichschenkligen Dreieck gilt $a=b$.

    Lösung

    So kannst du den Lückentext vervollständigen:

    „Die Seiten eines Dreiecks bezeichnen wir mit Großbuchstaben, hier mit $a$, $b$ und $c$. Den Umfang bestimmen wir wie folgt:

    $U=a+b+c$“.

    • Der Umfang einer Fläche ist die Länge der Begrenzungslinie. Da ein Dreieck durch seine drei Seitenlängen begrenzt wird, addieren wir alle drei Längen.
    „Auch bei diesem rechtwinkligen Dreieck bestimmen wir den Umfang, indem wir alle Seitenlängen wie folgt addieren:

    $U=a+b+c$“.

    • Ob das Dreieck rechtwinklig ist oder nicht, ändert nichts an der Berechnung des Umfangs.
    „Bei einem gleichschenkligen Dreieck sind zwei Seiten gleich lang. Hier können wir den Umfang wie folgt berechnen:

    $U=2a+c$“.

    • In diesem Dreieck gilt $a=b$. Deshalb können wir den Umfang so berechnen.
    „Bei einem gleichseitigen Dreieck sind alle Seiten gleich lang. Den Umfang können wir also folgendermaßen bestimmen:

    $U=3a$“.

    • Bei diesem Dreieck gilt: $a=b=c$. Damit können wir die bekannte Formel vereinfachen.
  • Tipps

    Die Formel zur Berechnung des Umfangs eines Dreiecks lautet:

    $U=a+b+c$.

    Lösung

    Den Umfang eines Dreiecks bestimmst du, indem du alle drei Seitenlängen $a$, $b$ und $c$ addierst. Es gilt also:

    • $U=a+b+c$.
    Du erhältst folgende Ergebnisse:

    • $U=4~\text{cm}+5~\text{cm}+6,4~\text{cm}=15,4~\text{cm}$
    • $U=7~\text{cm}+8~\text{cm}+10,6~\text{cm}=25,6~\text{cm}$
    • $U=3~\text{cm}+7~\text{cm}+7,6~\text{cm}=17,6~\text{cm}$
    • $U=8~\text{cm}+12~\text{cm}+14,4~\text{cm}=34,4~\text{cm}$
  • Tipps

    Gleichschenklige Dreiecke haben zwei Seiten, die gleich lang sind. Auch wenn nur eine dieser Seiten beschriftet ist, kannst du deshalb den Umfang bestimmen.

    Gleichseitige Dreiecke haben drei gleiche Seitenlängen. Hier kannst du mit nur einer beschrifteten Seite den Umfang angeben.

    Lösung

    Den Umfang eines Dreiecks bestimmst du immer durch Addition aller Seitenlängen. Also:

    $U=a+b+c$.

    Für die ersten beiden Dreiecke erhältst du so:

    • $U=13~\text{cm}+12~\text{cm}+10~\text{cm}=35~\text{cm}$
    • $U=10~\text{cm}+14~\text{cm}+17,2~\text{cm}=41,2~\text{cm}$
    Gleichschenklige Dreiecke haben zwei Seitenlängen, die gleich lang sind. Auch wenn nur eine dieser Seiten beschriftet ist, kannst du deshalb den Umfang bestimmen.

    • $U=2 \cdot 10~\text{cm}+15~\text{cm}=35~\text{cm}$
    Gleichseitige Dreiecke haben drei gleiche Seitenlängen. Hier kannst du mit nur einer beschrifteten Seite den Umfang angeben.

    • $U=3 \cdot 17~\text{cm}=51~\text{cm}$
  • Tipps

    Den Umfang eines Dreiecks bestimmst du, indem du alle drei Seitenlängen $a$, $b$ und $c$ addierst.

    Lösung

    Den Umfang eines Dreiecks bestimmst du, indem du alle drei Seitenlängen $a$, $b$ und $c$ addierst. Es gilt also:

    • $U=a+b+c$.
    So erhältst du folgende Lösungen:

    • Das erste Dreieck hat einen Umfang von: $U=45~\text{m}+25~\text{m}+60~\text{m}=130~\text{m}$
    • Das zweite Dreieck hat einen Umfang von: $U=3~\text{cm}+4~\text{cm}+5~\text{cm}=12~\text{cm}$
    • Das dritte Dreieck hat einen Umfang von: $U=2 \cdot 9~\text{cm}+12~\text{cm}=30~\text{cm}$
  • Tipps

    Der Umfang einer Figur ist die Länge seiner Begrenzungslinie. Hier musst du also überlegen, welche der Längen die Figur nach außen begrenzen. Daraus kannst du die Formel für den Umfang zusammensetzen.

    Hast du die Formel aufgestellt, kannst du die gegebenen Längen einsetzen, um die Länge des Umfangs zu bestimmen.

    Lösung

    Der Umfang einer Figur ist die Länge seiner Begrenzungslinie. Hier musst du also überlegen, welche der Längen die Figur nach außen begrenzen. Das sind die Längen $a$ und $b$ (diese kommen jeweils zweimal vor), sowie die Längen $c$ und $d$. Deshalb setzt sich die Formel wie folgt zusammen:

    $U=2 \cdot a+ 2 \cdot b + c + d$.

    Jetzt können wir die gegebenen Längen einsetzen, um den Umfang zu bestimmen:

    $U=2 \cdot 4~\text{cm}+ 2 \cdot 6~\text{cm} + 7~\text{cm} + 8~\text{cm}=35~\text{cm}$

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.369

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.218

Lernvideos

38.694

Übungen

33.502

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden