Zwischenzeugnis-Aktion: 30 Tage ohne Risiko testen!

Jetzt von der Qualität unserer Inhalte überzeugen, Aktion gilt nur bis zum 20.02.2017.

Zwischenzeugnis-Aktion: 30 Tage ohne Risiko testen!

Zufrieden oder Geld zurück, eine Mail an kein-risiko@sofatutor.com genügt (30 Tage ab Kauf).

Punkte im Raum – Abstandsberechnung – Übungen

Mit Spaß üben und Aufgaben lösen

Entschuldige, die Übungen sind zurzeit nur auf Tablets und Computer verfügbar. Um die Übungen zu nutzen, logge dich bitte mit einem dieser Geräte ein.

Brauchst du noch Hilfe? Schau jetzt das Video zur Übung Punkte im Raum – Abstandsberechnung

Hallo, mein Name ist Frank. Weißt du noch, wie der Abstand von zwei Punkten in der Ebene berechnet wird? Du trägst die beiden Punkte in das x-y-Koordinatensystem ein und kannst erkennen, dass die Strecke der beiden Punkte gerade die Hypotenuse eines rechtwinkligen Dreieckes entspricht. Und da kommt der Satz des Pythagoras ins Spiel, mit welchem du eine Abstandsformel herleiten kannst. Durch zweimaliges Anwenden des Satzes von Pythagoras kannst du diese Formel für den Abstand zwischen zwei Punkten im Raum verallgemeinern. Wie? Das kannst du in diesem Video sehen. Ich wünsche dir viel Erfolg beim Lernen. Bis zum nächsten Mal, dein Frank.

mehr »
Zum Video
Aufgaben in dieser Übung
Beschreibe, wie der Abstand zweier Punkte im Raum berechnet wird.
Berechne den Abstand der Punkte im $\mathbb{R}^2$ und im $\mathbb{R}^3$.
Verwende die Abstandsformel zur Berechnung des Abstandes der beiden Punkte $P$ und $Q$.
Ermittle den Punkt mit dem größten Abstand zu $A(1|1|3)$.
Gib die Formel zur Berechnung des Abstandes für $d(P;S)$ im $\mathbb{R}^2$ und $d(R;S)$ im $\mathbb{R}^3$ an.
Weise nach, dass das Dreieck $\Delta_{ABC}$ gleichschenklig ist.