Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Vektorgröße – Geschwindigkeit

Bereit für eine echte Prüfung?

Das Vektorgröße Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.0 / 8 Bewertungen
Die Autor*innen
Avatar
Jochen Kalt
Vektorgröße – Geschwindigkeit
lernst du in der 10. Klasse - 11. Klasse - 12. Klasse - 13. Klasse

Grundlagen zum Thema Vektorgröße – Geschwindigkeit

Viele physikalische Größen werden nicht nur von einem Zahlenwert mit Einheit dargestellt - sie bestehen stattdessen aus mehreren Werten, meist aus einem Betrag und einer Richtung. Solche Größen werden mit Vektoren beschrieben. In diesem Video erkläre ich den Vektorcharakter der Geschwindigkeit. Zuerst werden die Begriffe Skalar und Vektor erklärt, dann werden verschiedene Beispiele aus der Physik vorgestellt und schließlich die Geschwindigkeit als vektorielle Größe eingeführt. Du wirst sehen, was das bedeutet, und welche Unterschiede es zu dem gibt, was man umgangssprachlich als Geschwindigkeit bezeichnet.

Transkript Vektorgröße – Geschwindigkeit

Hallo und herzlich willkommen. In diesem Video beschäftigen wir uns mit dem Vektorcharakter der Geschwindigkeit. Am Ende des Videos wirst du gelernt haben, dass Geschwindigkeit mehr ist als nur ein Zahlenwerk mit Einheit und dass das auch für andere physikalische Größen der Fall ist. Um das zu verstehen, werden zuerst die Begriffe Skalar und Vektor erklärt. Außerdem wirst du sehen, welche physikalischen Größen als Vektoren dargestellt werden. Dann wird die Geschwindigkeit als vektorielle Größe eingeführt. Du wirst sehen, was das bedeutet und welche Unterschiede es zu dem gibt, was man umgangssprachlich als Geschwindigkeit bezeichnet. Und damit kann es auch schon losgehen. In der Physik unterscheidet man, ob eine Größe als Skalar oder als Vektor dargestellt wird. Ein Skalar ist eine ungerichtete Größe und wird durch einen Zahlenwert, den man zusätzlich noch mit einer Einheit versieht, dargestellt. Skalare sind dir in der Physik sicherlich schon begegnet. Die Masse ist ein Skalar, die du schon kennst. Um zu wissen, wie schwer etwas ist, reicht es aus, eine Zahl und eine Einheit anzugeben, da das Gewicht keine Richtung hat. Gerichtete physikalische Größen werden durch Vektoren dargestellt. Ein Vektor wird durch zwei Dinge charakterisiert: Zum einen durch den Betrag. Der Betrag gibt an, wie groß die betrachtete physikalische Größe ist. Außerdem hat ein Vektor eine Richtung. Die Richtung gibt an, in welche Richtung die Größe zeigt. Ein Beispiel für einen Vektor ist die Kraft. Sie wird allgemein mit F abgekürzt. Um klar zu machen, dass es sich um eine gerichtete Größe, also einen Vektor handelt, versieht man alle vektoriellen Größen mit einem Pfeil über dem Buchstaben. Meint man nur den Betrag einer vektoriellen Größe, so setzt man Betragsstriche darum oder verzichtet auf den Pfeil über dem Formelzeichen. Auf einem Schwerefeld der Erde wirkt die Gewichtskraft. Sie greift zum Schwerpunkt des Körpers an und zeigt nach unten. Vektoren werden als Pfeile dargestellt. Die Länge des Pfeils gibt dabei den Betrag der Kraft an. Das heißt, er gibt an, wie groß sie ist, zum Beispiel 20 Newton. Die Richtung, in die der Pfeil zeigt, ist die gleiche, in die die Kraft wirkt. Der Angriffspunkt ist in diesem Fall der Schwerpunkt. Weitere Beispiele für physikalische Größen, die als Vektoren angegeben werden, sind: die Beschleunigung, der Drehimpuls und die Geschwindigkeit. Dennoch, die Geschwindigkeit ist eine vektorielle Größe und hat als solche einen Betrag und eine Richtung. Das kann man sich an einer Billardkugel auf einem Billardtisch klarmachen. Stößt man sie mit einem Queue an, so bewegt sie sich. Angenommen, ein Freund will Dir genau erklären, was passiert, wenn du den Tisch nicht sehen kannst. Wenn er dir sagt, dass sich die Kugel mit einem Meter pro Sekunde bewegt, also er Tempo angibt, dann weißt du zwar, wie schnell sie ist, aber du weißt nicht, welche Kugel sie als nächstes treffen wird. Um die Bewegung der Kugel komplett zu beschreiben, muss man also auch noch die Richtung der Bewegung angeben. Die Länge des Pfeils gibt dabei an, welchen Zahlenwert die Geschwindigkeit hat. Und die Richtung des Pfeils gibt an, in welche Richtung sich der Körper bewegt. Die Geschwindigkeit besteht also aus einem Zahlenwert mit Einheit, den man Betrag der Geschwindigkeit nennt und einer Richtung. Daraus folgt, dass sich die Geschwindigkeit als vektorielle Größe ändert, wenn sich die Richtung ändert. Das hört sich jetzt vielleicht erst einmal etwas komisch an. Die Geschwindigkeit ist im physikalischen Sinne also etwas anderes als das, was man im Alltag unter dem Begriff versteht. Um das eindeutiger zu machen, könnte man auch Tempo anstatt Geschwindigkeit sagen, wenn man den Geschwindigkeitsbetrag ohne Richtung meint. Wenn zum Beispiel ein Auto in eine Kurve fährt und dabei nicht langsamer wird, also das Tempo sich nicht ändert, so würde man denken, die Geschwindigkeit ändert sich nicht. In der Kurve ändert sich aber die Richtung der Geschwindigkeit. Da die Geschwindigkeit aus Betrag und Richtung besteht, ändert sich also die Geschwindigkeit, wenn sich die Richtung ändert. Somit ändert sich die Geschwindigkeit in einer Kurve immer, Auch wenn das Auto nicht langsamer wird. So, was hast du eben gelernt? In der Physik gibt es Skalare und Vektoren. Skalare sind richtungsunabhängige Größen und werden durch einen Zahlenwert mit einer Einheit dargestellt. Vektoren sind gerichtete Größen und werden durch Betrag und Richtung charakterisiert. Die Formelzeichen von Vektoren oder auch vektoriellen Größen werden durch einen Pfeil darüber gekennzeichnet. Zum Beispiel wird das Formelzeichen der Kraft, F, mit einem Pfeil darüber angegeben, um zu zeigen, dass es sich um einen Vektor handelt. Meint man nur den Betrag, so setzt man Betragsstriche darum oder verzichtet auf den Pfeil. Der Betrag eines Vektors gibt an, wie groß die betrachtete Größe ist. Er wird mit einem Zahlenwert und einer Einheit angegeben. Vektoren können mit Pfeilen dargestellt werden. Die Länge des Pfeils ist ein Maß für den Betrag des Vektors. Seine Richtung gibt die Richtung der physikalischen Größe an und sein Angriffspunkt stimmt mit dem Angriffspunkt der Größe überein. Auch die Geschwindigkeit ist eine vektorielle Größe, denn jede Bewegung hat eine Richtung. Der Betrag der Geschwindigkeit gibt das Tempo der Bewegung an. Der Betrag kann gleich bleiben, auch wenn sich die Richtung des Vektors und damit die Geschwindigkeit ändert. Fährt man zum Beispiel mit dem Auto mit gleichbleibendem Tempo um die Kurve, so bleibt der Betrag der Geschwindigkeit gleich. Man wird nicht schneller oder langsamer, doch die Geschwindigkeit ändert sich in diesem Fall, da man die Richtung ändert. Das war es zu dem Thema: Vektorcharakter der Geschwindigkeit. Ich hoffe, du hast etwas gelernt. Tschüss und bis zum nächsten Mal.

1 Kommentar
1 Kommentar
  1. "..., da das Gewicht keine Richtung hat." :P haha

    Von Lisa Moeller123, vor fast 9 Jahren

Vektorgröße – Geschwindigkeit Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Vektorgröße – Geschwindigkeit kannst du es wiederholen und üben.
  • Beschreibe den Unterschied zwischen Skalar und Vektor.

    Tipps

    Ob es sich um eine vektorielle oder eine skalare Größe handelt, hängt davon ab, ob man für sie auch eine Richtung angeben kann.

    Lösung

    Oft genügt es nicht, nur den Betrag einer Größe anzugeben, um diese vollständig zu beschreiben. Als Beispiel kann man hier die Beschleunigung nennen. Stell dir z.B. einen Apfel vor, der von einem Baum fällt. Die Erdbeschleunigung beträgt etwa 10 $m/s^2$. Man kann also mit der Angabe dieser Betragsgröße sagen, dass der Apfel, sobald sein Stiel vom Ast gebrochen ist, mit 10 $m/s^2$ beschleunigt wird. Nun hat die Erfahrung gezeigt, dass dies auf einer geradlinigen Bahn nach unten passiert. Diese Information ist aber in der Betragsgröße noch nicht enthalten. Der Apfel könnte nach dieser Angabe genauso gut in Richtung Himmel beschleunigt werden. Vektorielle Größen sind daher in der Physik, z.B. bei der vollständigen Beschreibung von Bewegungen, unverzichtbar.

    So ist auch die vektorielle Größe der Erdbeschleunigung in Richtung des Erdmittelpunktes gerichtet.

  • Nenne Beispiele für skalare und vektorielle Größen.

    Tipps

    Für eine vektorielle Größe kann immer eine Richtung angegeben werden.

    Lösung

    Die Kraft (Einheit $N$), die Geschwindigkeit ($m/s$), die Beschleunigung ($m/s^2$), der Impuls ($N\cdot s$) und der Drehimpuls ($\frac{kg\cdot m^2}{s}$) sind Größen, für die man einen Betrag und eine Richtung angeben kann.

    Der Wert der Temperatur (°$C$), der Masse ($kg$), der Zeit ($s$) und des Volumens ($m^3$) kann hingegen nur als Betrag angegeben werden. Es handelt sich daher um skalare Größen. So kann zwar z.B. der Wert der Temperatur auch negative Werte annehmen (z.B. -2 °$C$). Das bedeutet aber noch nicht, dass hier auch eine Richtung vorgegeben ist! Es sei noch erwähnt, dass die Zeit im Rahmen der Relativitätstheorie eine besondere Rolle einnimmt. In der klassischen Physik kann sie aber als skalare Größe betrachtet werden.

  • Schätze den Betrag der Geschwindigkeit der Billardkugeln ab.

    Tipps

    Mit der Pfeildarstellung von Vektoren lassen sich zwei Eigenschaften des Vektors darstellen. Die Richtung des Pfeils verdeutlicht die Richtung der Geschwindigkeit.

    Lösung

    Um die Bewegung einer Billardkugel auf dem Tisch genau erklären zu können, muss man angeben, wie groß der Betrag ihrer Geschwindigkeit ist und in welche Richtung sich die Kugel mit der Geschwindigkeit bewegt. Eine vektorielle Größe beinhaltet beide dieser Angaben. Es bietet sich daher an, Vektoren mit Pfeilen darzustellen. Die Richtung des Pfeils zeigt hierbei die Richtung der Bewegung an. Die Länge des Pfeils ist ein Maß für den Betrag der Geschwindigkeit. Man kann auch sagen, dass die Länge des Pfeils das Tempo der Kugel angibt. Hieraus ergibt sich die Reihenfolge der Billardkugeln: Je länger der Pfeil, desto höher der Betrag der Geschwindigkeit beziehungsweise das Tempo der Kugel.

    Die Richtung der Pfeile war für die Beantwortung der Aufgabe unwichtig. Bedenke aber, dass auf die Angabe der Richtung einer vektoriellen Größe nicht verzichtet werden kann. In der Abbildung sind hierfür nochmal zwei Kugeln dargestellt. Sie haben das gleiche Tempo, ihre vektoriellen Geschwindigkeiten unterscheiden sich dennoch aufgrund der verschiedenen Richtungen, in die sie sich bewegen. Es gilt also $\overrightarrow{v}_{blau}\neq \overrightarrow{v}_{rot}$.

  • Nenne Beispiele, bei denen eine Änderung der vektoriellen Größe Geschwindigkeit auftritt.

    Tipps

    Die vektorielle Größe Geschwindigkeit hat einen Betrag und eine Richtung.

    Man kann von einer Geschwindigkeitsänderung sprechen, wenn sich Betrag oder Richtung verändern.

    Lösung

    Bei der Geschwindigkeit handelt es sich um eine vektorielle Größe, denn jede Bewegung hat eine Richtung.

    Um entscheiden zu können, ob eine Geschwindigkeitsänderung in den genannten Beispielen vorliegt, musst du also immer jeweils entscheiden, ob sich der Betrag der Geschwindigkeit verändert und ob es zu einer Änderung der Richtung der Bewegung kommt. Trifft eines von beidem zu, so kann man sagen, dass sich die Geschwindigkeit verändert.

    Man kann sich hierfür das Beispiel mit dem Mond, der sich auf einer Kreisbahn um die Erde bewegt, noch einmal genauer anschauen. Nimmt man die Geschwindigkeit als skalare Größe an, betrachtet also nur ihren Betrag, dann kann man sagen, dass hier keine Geschwindigkeitsänderung vorliegt. Die Geschwindigkeit als vektorielle Größe verändert sich auf einer Kreisbahn jedoch zu jeder Zeit. So steht der Geschwindigkeitsvektor in jedem Punkt, in dem sich der Mond gerade befindet, tangential auf seiner Kreisbahn.

  • Nenne physikalische Formelzeichen, die für eine vektorielle oder skalare Größe stehen.

    Tipps

    Ein Vektor ist eine gerichtete Größe. Dies wird auch bei Betrachtung der Formelzeichen deutlich.

    Lösung

    Um zu verdeutlichen, dass es sich um eine vektorielle Größe handelt, wird das Formelzeichen mit einem Pfeil versehen. Die Verwendung eines Pfeils soll verdeutlichen, dass es sich bei Vektoren um gerichtete Größen handelt. Wenn man nur den Betrag einer vektoriellen Größe und nicht die dazugehörige Richtung angeben möchte, dann kann man auf den Pfeil über dem Formelzeichen verzichten. Eine alternative Darstellung ist, das vektorielle Formelzeichen in Betragsstriche zu setzen. Gibst du also z.B. die Geschwindigkeit als Betragsgröße an, so solltest du das Formelzeichen $v$ oder $|\overrightarrow{v}|$ verwenden. Meinst du die vektorielle Größe, die eine Angabe der Richtung der Geschwindigkeit einschließt, dann solltest du das Formelzeichen $\overrightarrow{v}$ verwenden.

    In der Physik gibt es unzählige Formelzeichen, die z.T. sogar nicht ganz einheitlich verwendet werden. Hier sind daher nochmal die Formelzeichen aus der Aufgabe zusammen mit ihrer Bedeutung aufgelistet.

    Die vektoriellen Größen:

    $\overrightarrow{a}$: die Beschleunigung

    $\overrightarrow{v}$: die Geschwindigkeit

    $\overrightarrow{L}$: der Drehimpuls

    $\overrightarrow{p}$: der Impuls

    Die skalaren Größen:

    $m$: die Masse

    $V$: das Volumen

    $T$: die Temperatur

    $t$: die Zeit

  • Analysiere die Windvorhersage für Nordeuropa.

    Tipps

    Wenn du die genannten Orte auf der Karte nicht erkennst, dann nimm dir einen Atlas zur Hand.

    Links = Westen, Oben = Norden, Rechts = Osten, Unten = Süden.

    Lösung

    Durch die Pfeile, die in die Karte eingezeichnet wurden, sind an jedem dargestellten Ort Aussagen über die Windgeschwindigkeiten möglich. An der Richtung und der Länge der Pfeile können sowohl die Windrichtungen als auch die Beträge der Windgeschwindigkeiten abgeschätzt werden. Wenn auf einer größeren Fläche oder auch in einem Volumen physikalische Größen durch Vektorpfeile dargestellt werden, dann spricht man auch von einem Vektorfeld. Vektorfelder haben zum Beispiel auch bei der Betrachtung von Meeresströmungen und elektrischen und magnetischen Feldern eine Bedeutung.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

7.517

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.910

Lernvideos

37.007

Übungen

34.245

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden