Advent, Advent, 1 Monat weihnachtliche Laufzeit geschenkt.

Nicht bis zur Bescherung warten, Aktion nur gültig bis zum 18.12.2016!

Textversion des Videos

Transkript Potenzen – Bruch als Potenz schreiben

Hallo! Hier ist noch eine Aufgabe zu: Schreibe als Potenz, beziehungsweise: Schreibe mit Hilfe von Potenzen. Und dann gibt es ja meistens mehrere Möglichkeiten. Wir haben hier 54/250. Ja, wie kann man das denn wohl als Potenz schreiben? Da stellt man sich erst mal vor, oder man fragt sich, ob man das ganze kürzen kann. Das erste, wenn du einen Bruch siehst, ist ja kürzen, der erste Reflex, und diesen Bruch hier kann man kürzen und damit wir das vollständig machen, überlegt man sich natürlich, wie ist die Primfaktorzerlegung von 54 und von 250.  Das ist hier kein Problem. 54 kommt im kleinen Einmaleins vor. Du weißt, dass 54=6×9 ist. Und die Primfaktorzerlegung von 6 kennst du und die von 9 auch. 6 ist ja 2×3, also haben wir hier, dass 54=2×3 ist. Und 9, das weißt du auswendig, das ist ja 3×3. Das ist wirklich Grundschulmathematik, ich hör immer die Klagen von Schülern, oh Primfaktorzerlegung so schwer, aber bitte, das 54=6×9 ist, das hast du in der Grundschule gelernt. Und das 6=2×3 ist und das 9=3×3 ist, das ist nun wirklich, ja das muss man in der 9. Klasse wissen. Wenn man es nicht weiß, kann man das auch gerne üben, aber eben an solchen Dingen auch immer wieder ins Gedächtnis zurückrufen, und das nicht mit dem Taschenrechner rechnen, selbstverständlich.  Also unterhalb der Grundschulmathematik sollte man sich wirklich nicht befinden, wenn man die 9. Klasse in einer deutschen Schule besucht. Wir haben 250, Primfaktorzerlegung von 250, guck erst mal nach irgendwelchen Faktoren, die ich da schon kenne, die ich heraussehen kann. Das ist natürlich 25 und 10, 10×25 = 250. Auch da ist es wieder kein Problem, die Primfaktorzerlegung zu machen. Ich weiß ja, das 10=2×5 ist, ja und auch das darf man bitte schlicht und ergreifend  wissen. 25=5×5. Und dann sehe ich auch gleich, was ich hier kürzen kann, nämlich nur die 2, also hab ich hier wieder 54/250, die jetzt gekürzt ergeben 27/125, also 27/125 das ist gleich 54/250. Nur die 2 kann man kürzen, und wenn man das jetzt also als Potenz schreiben möchte, dann sieht man hier gleich, der Zähler ist 3×3×3 und der Nenner ist 5×5×5, deshalb kann man also 3/53 rechnen und dann ist das ganze eine Potenz. Heraus kommen 27/125 = 54/250. Und jetzt hab ich ja schon gesagt, man hat noch viele weitere Möglichkeiten, wenn man Brüche benutzt. Und zwar kann man ja unechte Brüche benutzen, also nicht gekürzte Brüche benutzen und dann zu demselben Ergebnis kommen, zum Beispiel könnt ich ja auch 6/103 rechnen. Das wäre das gleiche wie 3/53; weil 6/10 = 3/5 ist. Und so könnte ich hier auch das noch mit 2 erweitern, zum Beispiel und schreibe das 12/20 sind, 12/20 ist das gleiche wie 3/5, weil man 12 und 20 mit 4 kürzen kann. Deshalb kriegt man ganz viele Schreibweisen, also unendlich viele Schreibweisen für denselben Bruch, für dieselbe Potenz, nämlich 3/53. Ja, damit mag das mal genügen mit den Umschreibereien hier. Viel Spaß mit den weiteren Aufgaben. Bis bald, tschüss. 

Informationen zum Video
2 Kommentare
  1. Flyer wabnik

    Die Antwort ist richtig. Du hast dich verrechnet. 3^3 ist 27 und nicht 81

    Von Martin Wabnik, vor mehr als 6 Jahren
  2. Default

    Die Antwort auf die Frage zum Video ist falsch, da (81/3000) nicht (3/10)^3 entsprechen.
    (3/10)^3=81/1000

    Von Crazy338, vor mehr als 6 Jahren