Binomialkoeffizient

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.

Binomialkoeffizient

Bernoulli-Formel

Binomialverteilung

Binomialverteilung – Erwartungswert und Standardabweichung

Binomialverteilung – kumulierte Wahrscheinlichkeiten

Binomialverteilung – Parameter n bestimmen

Binomialverteilung – Parameter k bestimmen

Binomialverteilung – Parameter p bestimmen

Binomialverteilung – Sigma-Regeln

Binomialverteilung – Verteilungstabelle
Binomialkoeffizient Übung
-
Beschreibe die Herleitung des Binomialkoeffizienten.
TippsZufallsexperiment ohne Zurücklegen: Wir ziehen aus einer Urne mit $n$ Kugeln nacheinander mehrere Kugeln, ohne diese nach dem Zug zurück in die Urne zu legen. Dadurch ist nach jedem Zug eine Kugel weniger in der Urne.
Zufallsexperiment mit Zurücklegen: Wir ziehen aus einer Urne mit $n$ Kugeln nacheinander mehrere Kugeln, und legen die gezogene Kugel nach jedem Zug zurück in die Urne. Dadurch sind bei jedem Zug gleich viele Kugeln in der Urne.
Beispiel:
Aus einer Urne mit $10$ Kugeln, die mit $1$ bis $10$ beschriftet sind, sollen $4$ Kugeln ohne Betrachtung der Reihenfolge und ohne Zurücklegen gezogen werden. Es gibt insgesamt
$\displaystyle \binom{10}{4} = \dfrac{10!}{4!\cdot (10-4)!} = \dfrac{10!}{4!\cdot 6!} = 210$
Möglichkeiten, diese Kugeln zu ziehen.
LösungAus $5$ Spielerinnen soll ein Team aus $3$ Spielerinnen zusammengestellt werden. Wir wollen untersuchen, wie viele mögliche Teams wir bilden können.
Wir können uns die Auswahl der $3$ Spielerinnen des Teams als Zufallsexperiment ohne Zurücklegen und ohne Beachtung der Reihenfolge vorstellen.
Wir betrachten zunächst die Anzahl der Möglichkeiten aus $5$ Spielerinnen $3$ auszuwählen:
- Für die erste Spielerin haben wir $5$ Möglichkeiten.
- Für die zweite Spielerin haben wir dann noch $4$ Möglichkeiten.
- Für die dritte Spielerin gibt es noch $3$ Möglichkeiten.
Insgesamt gibt es also $5 \cdot 4 \cdot 3$ Möglichkeiten, da die Spielerinnen jeweils beliebig miteinander kombiniert werden können.Für die Aufstellung des Teams gibt es jedoch weniger Möglichkeiten, da hier die Reihenfolge nicht relevant ist. Wir können aus den drei ausgewählten Spielerinnen jeweils $3 \cdot 2 \cdot 1$ mögliche Kombinationen zusammenfassen, da für die erste Position $3$ Spielerinnen in Frage kommen, für die zweite Position $2$ Spielerinnen und für die letzte Position nur noch $1$ Spielerin.
Für die Auswahl des Dreierteams gibt es daher $\dfrac{5 \cdot 4 \cdot 3}{3 \cdot 2 \cdot 1} = \dfrac{60}{6} = 10$ Möglichkeiten.
Den Ausdruck $\dfrac{5 \cdot 4 \cdot 3}{3 \cdot 2 \cdot 1} $ können wir auch mit Fakultäten darstellen:
$\dfrac{5 \cdot 4 \cdot 3}{3 \cdot 2 \cdot 1} = \dfrac{5! }{3! \cdot 2!}$
Dabei gilt:
- $5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$
- $3! = 3 \cdot 2 \cdot 1$
- $2! = 2 \cdot 1$
$\displaystyle \binom{5}{3} = \dfrac{5! }{3! \cdot (5-3)!}$
-
Vervollständige die Binomialkoeffizienten.
TippsBeispiel:
$\displaystyle \binom{8}{4} = \dfrac{8! }{4! \cdot (8-4)!} = \dfrac{8! }{4! \cdot 4!} = 70$
In den Zähler musst du die obere Zahl aus dem Binomialkoeffizienten übernehmen.
LösungDie Formel für den Binomialkoeffizienten lautet:
$\displaystyle \binom{n}{k} = \dfrac{n! }{k! \cdot (n-k)!} $
Wir können die gegebenen Beispiele in die Formel einsetzen und erhalten:
$\quad\displaystyle \binom{5}{3} = \dfrac{5! }{3! \cdot (5-3)!} = \dfrac{5! }{3! \cdot 2!} = 10$
$\quad\displaystyle \binom{10}{4} = \dfrac{10! }{4! \cdot (10-4)!} = \dfrac{8! }{4! \cdot 6!} = 210$
$\quad\displaystyle \binom{8}{3} = \dfrac{8! }{3! \cdot (8-3)!} = \dfrac{8! }{3! \cdot 5!} = 56$
-
Stelle den passenden Binomialkoeffizienten auf.
TippsDer Binomialkoeffizient gibt die Anzahl der möglichen Kombinationen bei der Auswahl von $k$ Elementen aus einer Grundmenge von $n$ Elementen ohne Wiederholung an.
Der Binomialkoeffizient lautet allgemein:
$\displaystyle \binom{n}{k} = \dfrac{n! }{k! \cdot (n-k)!} $
LösungWir verwenden den Binomialkoeffizienten, um die Anzahl der möglichen Kombinationen bei der Auswahl von $k$ Elementen aus einer Grundmenge von $n$ Elementen zu bestimmen. Dabei betrachten wir den Fall ohne Zurücklegen und ohne Beachtung der Reihenfolge. Der Binomialkoeffizient lautet allgemein:
$\displaystyle \binom{n}{k} = \dfrac{n! }{k! \cdot (n-k)!} $
In unseren Beispielen müssen wir also jeweils die Anzahl in der Gesamtmenge $n$ und die Anzahl in der Auswahl
$k$ bestimmen:
- Es werden $2$ Eissorten aus $8$ Eissorten ausgewählt:
$\displaystyle \binom{8}{2} = \dfrac{8! }{2! \cdot (8-2)!} = \dfrac{8! }{2! \cdot 6!} = 28$- Aus $8$ Kindern wird ein $5$-er Team zusammengestellt:
$\displaystyle \binom{8}{3} = \dfrac{8! }{5! \cdot (8-5)!} = \dfrac{8! }{5! \cdot 3!} = 56$- Aus $6$ Gerichten werden $3$ Gerichte gewählt:
$\displaystyle \binom{6}{3} = \dfrac{6! }{3! \cdot (6-3)!} = \dfrac{6! }{3! \cdot 3!} = 20$- Aus $5$ Tänzern wird ein Paar gewählt:
$\displaystyle \binom{5}{2} = \dfrac{5! }{2! \cdot (5-2)!} = \dfrac{5! }{2! \cdot 3!} = 10$- Es werden $2$ Tage aus $3$ Tagen bestimmt:
$\displaystyle \binom{3}{2} = \dfrac{3! }{2! \cdot (3-2)!} = \dfrac{3! }{2! \cdot 1!} = 3$ -
Überprüfe die Berechnung des Binomialkoeffizienten.
TippsBeispiel:
$\displaystyle \binom{13}{11} = \dfrac{13! }{11! \cdot (13-11)!} = \dfrac{13! }{11! \cdot 2!} = 78$
Du kannst den Wert des Binomialkoeffizienten auch mit dem Taschenrechner bestimmen. Dazu verwendest du die Funktion: $\text{nCr}$.
LösungDie Formel für den Binomialkoeffizienten lautet:
$\displaystyle \binom{n}{k} = \dfrac{n! }{k! \cdot (n-k)!} $
Sie gibt die Anzahl der möglichen Kombinationen bei der Auswahl von $k$ Elementen aus einer Grundmenge von $n$ Elementen an. Dabei betrachten wir den Fall ohne Zurücklegen und ohne Beachtung der Reihenfolge.
Die Schreibweise Fakultät: $n!$, ist eine Abkürzung dafür, dass von $n$ absteigend alle natürlichen Zahlen bis zur $1$ multipliziert werden, also zum Beispiel:
$5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$
Damit können wir die gegebenen Rechnungen überprüfen:
Richtige Rechnungen:
$\displaystyle \binom{12}{4} = \dfrac{12! }{4! \cdot (12-4)!} = \dfrac{12! }{4! \cdot 8!} = 495$
$\displaystyle \binom{7}{3} = \dfrac{7! }{3! \cdot (7-3)!} = \dfrac{7! }{3! \cdot 4!} = 35$
$\displaystyle \binom{11}{2} = \dfrac{11! }{2! \cdot (11-2)!} = \dfrac{11! }{2! \cdot 9!} = 55$
Falsche Rechnungen:
$\displaystyle \binom{8}{4} = \dfrac{8! }{4! \cdot 8-4!}\quad$ Hier fehlen die Klammern um die Differenz $8-4$ im Nenner.
Richtig lautet die Rechnung: $\displaystyle \binom{8}{4} = \dfrac{8! }{4! \cdot (8-4)!} = \dfrac{8! }{4! \cdot 4!} = 70$$\displaystyle \binom{14}{9} = 944\quad$ Das Ergebnis ist falsch.
Die korrekte Rechnung lautet: $\displaystyle \binom{14}{9} = \dfrac{14! }{9! \cdot (14-9)!} = \dfrac{14! }{9! \cdot 5!} = 2002$$\displaystyle \binom{8}{3} = \dfrac{8! }{3!}\quad$ Hier fehlt der Faktor $(n-k)! = (8-3)! = 5!$ im Nenner.
Richtig lautet die Rechnung: $\displaystyle \binom{8}{3} = \dfrac{8! }{3! \cdot (8-3)!} = \dfrac{8! }{4! \cdot 5!} = 56$ -
Benenne den abgebildeten Term mathematisch.
TippsEs sind keine Brüche dargestellt!
Die Abkürzung ! wurde erstmals von Christian Kramp verwendet, der auch die Bezeichnung faculté einführte, was Fähigkeit bedeutet.
LösungWir verwenden die obigen Schreibweisen im Zusammenhang mit dem Binomialkoeffizienten. Dieser gibt die Anzahl der möglichen Kombination bei der Auswahl von $k$ Elementen aus einer Grundmenge von $n$ Elementen an. Dabei betrachten wir den Fall ohne Zurücklegen und ohne Beachtung der Reihenfolge.
Der Binomialkoeffizient wird allgemein wie folgt geschrieben:
$\displaystyle \binom{n}{k}$
Wir sagen: n über k
Die Definition des Binomialkoeffizient lautet allgemein:
$\displaystyle \binom{n}{k} = \dfrac{n! }{k! \cdot (n-k)!} $
Darin enthalten ist die Schreibweise
$n!$
Wir sagen: n Fakultät
Unsere Beispiele lesen wir also wie folgt:
$\quad\displaystyle \binom{7}{2} \quad$ Sieben über zwei
$\quad\displaystyle \binom{8}{3} \quad$ Acht über drei
$\quad~~\,5! \quad~~$ Fünf Fakultät
$\quad~~\,3! \quad~~$ Drei Fakultät
-
Leite allgemeine Zusammenhänge zum Binomialkoeffizienten her.
TippsEs gilt: $0!=1$
Setze in die allgemeine Formel des Binomialkoeffizienten ein und vereinfache diese so weit wie möglich. Versuche auch geschickt zu kürzen!
LösungAnhand der Definition des Binomialkoeffizienten können wir allgemeine Zusammenhänge aufzeigen. Der Binomialkoeffizient lautet:
$\displaystyle \binom{n}{k} = \dfrac{n! }{k! \cdot (n-k)!} $
Wir betrachten die gegebenen Binomialkoeffizienten, setzen in die Formel ein und vereinfachen.
Dabei erhalten wir in folgenden Fällen einen Wert von $1$:
$\displaystyle \binom{n}{n} = \dfrac{n! }{n! \cdot (n-n)!} = \dfrac{n! }{n! \cdot (0)!} = \dfrac{n! }{n! \cdot 1} = \dfrac{n! }{ n!} = 1 $
$\displaystyle \binom{n}{0} = \dfrac{n! }{0! \cdot (n-0)!} = \dfrac{n! }{0! \cdot n!} = \dfrac{n! }{1 \cdot n!} = \dfrac{n! }{ n!} = 1 $
$\displaystyle \binom{k}{k} = \dfrac{k! }{k! \cdot (k-k)!} = \dfrac{k! }{k! \cdot (0)!} = \dfrac{k! }{k! \cdot 1} = \dfrac{k! }{ k!} = 1 $
Wir nutzen, dass gilt: $0! = 1$, und können zuletzt kürzen.
In folgenden Fällen erhalten wir den Wert $n$:
$\displaystyle \binom{n}{1} = \dfrac{n! }{1! \cdot (n-1)!} = \dfrac{n! }{1 \cdot (n-1)!} = \dfrac{n \cdot (n-1) \cdot (n-2) \cdot \, \dots \, \cdot 1 }{(n-1)!} = \dfrac{n \cdot (n-1)!}{(n-1)!} = n$
$\displaystyle \binom{n}{n-1} = \dfrac{n! }{(n-1)! \cdot (n-(n-1))!} = \dfrac{n \cdot (n-1) \cdot (n-2) \cdot \, \dots \, \cdot 1 }{(n-1)! \cdot 1!} = \dfrac{n \cdot (n-1)!}{(n-1)!}= n$
Wir erkennen durch Ausschreiben der Fakultäten, dass wir mit $n \cdot (n-1) \cdot (n-2) \cdot \, \dots \, \cdot 1$ als $n \cdot (n-1)!$ schreiben können.
Der folgende Binomialkoeffizient ist identisch zu $\displaystyle \binom{n}{k}$:
$\displaystyle \binom{n}{n-k} = \dfrac{n! }{(n-k)! \cdot (n-(n-k))!} = \dfrac{n! }{(n-k)! \cdot k!} = \dfrac{n! }{k! \cdot (n-k)!} = \binom{n}{k} $
Wir können in die Formel einsetzen, vereinfachen und erkennen, dass der allgemeine Binomialkoeffizient herauskommt. Diese Eigenschaft nennt man die Symmetrie des Binomialkoeffizienten. Wir erkennen sie auch in den anderen betrachteten Fällen:
$\displaystyle \binom{n}{n} = 1 = \binom{n}{n - n} = \binom{n}{0}$
$\displaystyle \binom{n}{1} = n = \binom{n}{n - 1}$
Der folgende Binomialkoeffizient hat den Wert $0$:
$\displaystyle \binom{k}{n} = 0$
Da $n \gt k$ gilt: $k -n \lt 0$.
Die Fakultät ist nur für natürliche Zahlen definiert und kann daher für den Term $(k-n)$ nicht gebildet werden.Es ist anschaulich unmöglich, aus beispielsweise $3$ Spielern ein Team aus $5$ Spielern zusammenzustellen. Es gibt also keine passende Kombination.
9.213
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.121
Lernvideos
38.596
Übungen
33.424
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Termumformungen – Übungen
- Volumen Kugel
- Winkelsummen in Dreiecken und Vierecken – Übungen
- Zahlen In Worten Schreiben
- Schriftliche Division – Übungen
- Meter