30 Tage risikofrei testen

Überzeugen Sie sich von der Qualität unserer Inhalte im Basis- oder Premium-Paket.

Überzeugen Sie sich von der Qualität unserer Inhalte.

30 Tage risikofrei testen

Normalengleichung in der Ebene – Übungen

Mit Spaß üben und Aufgaben lösen

Entschuldige, die Übungen sind zurzeit nur auf Tablets und Computer verfügbar. Um die Übungen zu nutzen, logge dich bitte mit einem dieser Geräte ein.

Brauchst du noch Hilfe? Schau jetzt das Video zur Übung Normalengleichung in der Ebene

Hallo! In diesem Video lernst du die Normalengleichung einer Geraden in der Ebene (R²) kennen. Du kennst bereits die Parametergleichung mit dem Stütz- und Richtungsvektor. Bei der Normalengleichung suchen wir einen Normalenvektor, der orthogonal zu der Geraden ist. Das Skalarprodukt zwischen dem Normalenvektor und dem Richtungvektor bzw. einem beliebigen Verbindungsvektor zweier Punkte auf der Geraden, ist nach der Definition des Skalarprodukts 0. Dadurch erhalten wir die Normalengleichung mit dem Normalenvektor und einem beliebigen Stützvektor p. Danach wandeln wir die Parametergleichung in die Normalengleichung und andersherum um. Am Ende zeige ich dir noch, warum die Bildung einer Normalenglechung einer Gerade im Raum (R³) nicht sinnvoll ist.Viel Spaß und Erfolg beim Lernen!

mehr »
Zum Video
Aufgaben in dieser Übung
Schildere, wie man von einer Parametergleichung zu einer Normalengleichung kommt.
Gib die Parametergleichung der Geraden $g$ an.
Prüfe, welche Vektoren senkrecht aufeinander stehen.
Leite eine Parametergleichung her.
Beschrifte die beiden Darstellungsformen einer Geraden in der Ebene.
Bestimme die Normalengleichung.