Advent, Advent, 1 Monat weihnachtliche Laufzeit geschenkt.

Nicht bis zur Bescherung warten, Aktion nur gültig bis zum 18.12.2016!

Zyklotron 11:38 min

Textversion des Videos

Transkript Zyklotron

Hallo und herzlich willkommen zu Physik mit Kalle. Wir wollen uns heute aus dem Gebiet Elektrizität und Magnetismus mit dem Zyklotron beschäftigen. Wir lernen heute, was ein Zyklotron ist, wie es aufgebaut ist und was in ihm passiert und zum Schluss wollen wir uns die Formeln ansehen, mit deren Hilfe man die Bahn geladener Teilchen in einem Zyklotron berechnen kann. Dann wollen wir mal. Ein Zyklotron ist eine etwas ältere Form eines Kreisbeschleunigers, in dem geladene Teilchen wiederholt beschleunigt und dabei von einem Magnetfeld auf einer Spiralbahn gehalten werden. Erfunden wurde das Ganze 1929 von Ernest Lawrence, den ihr hier mit seinem Kollegen Lewingston vor dem 1. Zyklotron seht. Ihr könnt die beiden dicken Magnetpole oben und unten sehen. Was aber nun wirklich genau im Zyklotron passiert, das wollen wir uns nun im nächsten Kapitel ansehen. Obwohl es inzwischen deutlich bessere Teilchenbeschleuniger gibt, wird das Zyklotron, weil es so einfach zu bauen ist, auch heute noch eingesetzt. Vor allem für medizinische Zwecke, wie z.B. Strahlentherapie. Ein Zyklotron besteht aus 2 Duanten, die senkrecht von einem Magnetfeld durchsetzt sind. Im Englischen sagt man wegen der Form einfach Di, stellt euch das Ganze am besten vor wie eine runde Sardinenbüchse die einfach in der Mitte durchgeschnitten ist. In der Mitte unseres Zyklotron befindet sich eine Ionenquelle, die also geladene Teilchen ausspuckt. Zwischen den Duanten. die durch einen schmalen Spalt getrennt sind, liegt die hochfrequente Wechselspannung UB an, mit deren Hilfe geladene Teilchen im Spalt beschleunigt werden. Hat UB die richtige Frequenz, dann werden die Teilchen mit jedem Durchgang durch den Zwischenraum beschleunigt. In dem Duanten wirkt nur das magnetische Feld. Daher beschreiben die Teilchen dort Halbkreisbare. Durch die wiederholte Beschleunigung wächst der Radius der Halbkreisbahnen beständig und daher folgt das Teilchen insgesamt einer Spiralbahn, bis es auf den Auslass trifft und das Zyklotron verlässt. Wie diese Spiralbahn nun genau aussieht und vor allem wie sie zustande kommt, das wollen wir uns nun im nächsten Kapitel ansehen. Durch die wiederholte Beschleunigung wächst der Radius der Halbkreisbahnen beständig und daher folgt das Teilchen insgesamt einer Spiralbahn, bis es auf den Auslass trifft und das Zyklotron verlässt.2 Sardinenbüchsenhälften, getrennt durch einen Spalt, der hier auf dem Bild deutlich größer ist, als in Wirklichkeit, und das Ganze wird durchsetzt von einem Magnetfeld. Zwischen diesen beiden Büchsenhälften schließen wir die Wechselspannung UB an. So, fast fertig. Jetzt fehlt uns nur noch die Ionenquelle im Spalt und dann kann es losgehen. Unser Ion wird nun von der Beschleunigungsspannung beschleunigt. In welche Richtung? Das hängt davon ab, wie sie gerade gepolt ist. Wir sagen mal, es geht nach links. Betritt unser Teilchen nun den Duanten, wirkt nur noch eine Kraft, und zwar die Lorenzkraft. Sie wirkt senkrecht zu Bewegungsrichtung und zur Magnetfeldrichtung. In unserm Fall, für ein positiv geladenes Teilchen, also nach unten. Falls ihr euch nun beschwert warum die Lorenzkraft auch mit im Beschleunigungsspalt wirkt, ihr habt ja recht, das tut sie, aber wie ich vorhin schon gesagt habe, in Wirklichkeit ist der Beschleunigungsspalt winzig. D.h. die Lorenzkraft innerhalb des Spaltes kann vernachlässigt werden. Zurück zu unserem Teilchen. Es wirkt also die Lorenzkraft Q×v×B. Und da sich weder Q noch V noch B im Duanten ändern, fliegt unser Teilchen also auf einer Kreisbahn. Die Bahn des Teilchens ist also ein Halbkreis, bis es wieder im Beschleunigungsspalt ankommt. Und in der Zwischenzeit soll sich unsere Beschleunigungsspannung umgepolt haben, sodass unser Teilchen diesmal nach rechts beschleunigt wird. Wie unsere Halbkreisbahn nun aussehen wird, nachdem wir das zweite Mal den Beschleunigungsspalt durchquert haben, das können wir einfach herausfinden, indem wir folgenden Ansatz machen. Die Lorenzkraft hält unser Teilchen auf der Kreisbahn, sie ist also die Zentripetalkraft. Darum können wir schreiben mv2/r=Q×v×B. Lös ich das auf nach dem Radius, dann erhalte ich: r=m×V/Q×B. Da meine Geschwindigkeit V nun mit jedem Durchgang durch den Beschleunigungsspalt steigen soll, ist auch der Radius meiner Halbkreisbahn nach jedem Durchlauf durch den Beschleunigungsspalt größer.  Unser Teilchen beschreibt also wieder eine Halbkreisbahn, mit größerem Radius  und kommt zum 2mal am Beschleunigungsspalt an. Die Polung der Beschleunigungsspannung sollte sich wieder geändert haben, sodass es erneut durch den Spalt beschleunigt wird. Dadurch steigt erneut der Radius der Kreisbahn im Duanten. Und so soll das Ganze immer weiter gehen. Ihr seht, der Trick bei der ganzen Geschichte ist, dass die Beschleunigungsspannung immer richtig gepolt ist, um unser Teilchen zu beschleunigen. Dazu muss ich die Umlaufdauer meines Teilchens herausfinden, um die Frequenz meiner Wechselspannung darauf abzustimmen. Darum kümmern wir uns aber im letzten Kapitel. Zuerst wollen wir uns noch ein anderes Problem ansehen. Wie ihr vielleicht gemerkt habt, wächst der Radius eines Teilchens mit jedem Durchlauf durch den Beschleunigungsspalt langsamer. Das könnte natürlich daran liegen, dass ich kein besonders guter Zeichner bin und das ist normalerweise auch kein schlechter Tipp. Diesmal ist es allerdings Absicht. Wie wir herausgefunden hatten, hängt der Radius von Masse, Geschwindigkeit, Ladung und Magnetfeld ab. Da M, Q, B konstant sein sollen, wollen wir mal sehen, ob wir nicht einen Ausdruck für die Geschwindigkeit finden. Wir setzen dazu die aufgewertete Beschleunigungsarbeit Wel gleich der gewonnenen kinetischen Energie, Wkin. Das ergibt für n-Durchläufe die Formel: Q×n×UB=½×mvn2. Lös ich das nach vn auf, dann erhalte ich, die Geschwindigkeit vn nach dem n-ten Durchlauf durch den Beschleunigungsspalt ist die \sqrt(2×Q×b×UB)/m. Ihr seht also, da wie vorhin schon gesagt, Q, UB und m konstant sind, wächst die Geschwindigkeit vn mit der Wurzel der Anzahl der Umläufe. Also vn ist proportional zu \sqrtn. Die Geschwindigkeit läuft also umso langsamer, je mehr Umläufe ich schon hinter mir habe. Und genau das Gleiche, ihr könnt es in der Formel oben sehen, gilt damit auch für den Radius. Wir können uns also merken: Die Zunahme des Bahnradius wird nach außen immer kleiner. Wie nun das Problem mit der Umlaufdauer gelöst wird, das wollen wir uns im letzten Kapitel ansehen. Mit welchen Formeln man diese Bewegungen berechnen kann, das können wir uns im letzten Kapitel ansehen. Dann wollen wir doch mal sehen, was ich hier für Ansätze machen kann. Als 1., für die Beschleunigung des geladenen Teilchens, die elektrische Energie, die zur Beschleunigung des Teilchens aufgewendet wird, ist gleich der kinetischen Energie. Ich kann also schreiben: n×Q×U für n-Beschleunigungen =½×m×vn2. Für die Halbkreisbahn kann ich schreiben: Die Kraft, die meine geladenen Teilchen auf ihrer Bahn hält, ist die Lorenzkraft. Ich schreibe also die Zentripetalkraft ist die Lorenzkraft oder m×v2/r=Q×v×B. Da ich hier gleich ein wenig umformen muss, mach ich mir erst mal eine kleine Skizze und ein paar Notizen. Ihr erinnert euch vielleicht, die Geschwindigkeit eines Objekts das sich auf einem Kreis bewegt, ist gleich dem Radius × der Winkelgeschwindigkeit. Ich schreibe also: v=ω×r. Wobei ω die Winkelgeschwindigkeit ist. Damit ist die Umlaufdauer T=2×π/ω. Und wenn ich diese beiden Gleichungen benutze, kann ich schreiben: 2×π×r/T=ω×r=v. Das macht auch Sinn. Bei der Geschwindigkeit v brauche ich für 2×π×r, was ja genau der Umfang des Kreises ist, exakt die Umlaufdauer T. So, damit bewaffnet machen wir uns nun mal auf die Suche nach der Formel für die Umlaufdauer T des Zyklotrons. Wir benutzen unseren Ansatz für die Halbkreisbahn, aus dem wir 1 v kürzen können und schreiben: m×vn/r=Q×B. Dies will ich nun umformen. Ihr seht, link steht v/r, wenn ich meine v=ω×r Formel nach ω auflöse, erhalte ich ω=v/r. Ich kann also links, statt v/r auch ω einsetzen. Wenn ich nun die Formel für meine Umlaufdauer nach ω auflöse, erhalte ich ω=2π/T. Ich kann also auch gleich statt v/r, 2π/T einsetzen. Damit erhalte ich also m×2π/T=Q×B oder aufgelöst nach der Umlaufdauer: T=2πm/Q×B. Ihr seht also, solange sich die Masse, die Ladung und die Magnetfeldstärke nicht ändern, ist die Umlaufdauer für alle Geschwindigkeiten gleich. Das ist ein wunderschönes Ergebnis für unser Problem. Solange ich also m, Q und B kenne, kann ich die Umlaufdauer der Teilchen für alle Geschwindigkeiten ausrechnen. Sie ist konstant und damit kann ich einfach mit Frequenz=1/Umlaufdauer, die Frequenz meiner Wechselspannung nun so einstellen, dass die Teilchen mit jedem Durchgang durch den Spalt beschleunigt werden. Probleme bekomme ich erst, wenn meine Teilchen so schnell werden, dass ich die relativistische Massenzunahme berücksichtigen muss. D.h. sobald ich relativistische Geschwindigkeitszunahmen erreiche, muss ich meine Formel anpassen. Denn dann steigt die Masse ja mit der Geschwindigkeit. Wir merken uns: Wenn ich relativistisch rechne, muss ich statt der Masse die relativistische Masse m=die Ruhemasse m0/\sqrt(1-v2/c2) einsetzen. Man muss relativistisch rechnen, sobald die Geschwindigkeit v des Teilchens 1/10 der Lichtgeschwindigkeit erreicht hat. Deswegen ist das Zyklotron übrigens für Elektronen eher ungeeignet. Aufgrund ihrer geringen Masse, werden sie im Spalt stark beschleunigt und erreichen damit viel zu schnell relativistische Geschwindigkeiten. Wir wollen noch mal wiederholen, was wir heute gelernt haben: Ein Zyklotron ist ein früher Kreisbeschleuniger, der aber auch heute noch wegen seiner Einfachheit, vor allem für medizinische Zwecke eingesetzt wird. Er besteht aus 2 Duanten, die sich in einem Magnetfeld befinden und zwischen denen eine hochfrequente Wechselspannung anliegt. Die Umlaufdauer ist für nicht-relativistische Geschwindigkeiten T=2πm/QB. Ist v größer oder gleich 1/10 der Lichtgeschwindigkeit, so muss ich relativistisch rechnen. Dann muss ich für die Masse m die Ruhemasse m0/\sqrt(1-v2/c2) einsetzen. So das wars schon wieder für heute. Ich hoffe, ich konnte euch helfen. Vielen Dank fürs Zuschauen. Vielleicht bis zum nächsten Mal, euer Kalle.

Informationen zum Video
5 Kommentare
  1. Karsten

    Diese Formel gehört zum elektrischen Feld, sie bestimmt die Beschleunigung der Ladungen im elektrischen Feld.
    Für den einmaligen Durchlauf beträgt die Beschleunigungsarbeit wie gewohnt: W_el = Q * U_B
    Also Ladung Q mal Beschleunigungsspannung U_B.

    Da beim Zyklotron jedoch viele Durchläufe erfolgen, wird diese mit der Anzahl der Durchläufe n multipliziert.
    Wir erhalten die Formel: W_el = n * Q * U_B.

    Von Karsten Schedemann, vor mehr als einem Jahr
  2. Washington cities 2200

    woher hat man denn für Wel die Formel W*n*Ub (minute 5:54)

    Von Omar Faris4, vor mehr als einem Jahr
  3. Default

    Super Video !
    Allerdings habe ich eine Frage. Im Video kommen folgende Ansätze vor : Wel = Wkin und Eel = Ekin
    Wo liegt da der unterschied ?

    Von Yannic S., vor mehr als einem Jahr
  4. Default

    Seh ich genauso sehr verständlich

    Von Mandana Sarram, vor etwa 2 Jahren
  5. Default

    sehr sehr gutes Video :D

    Von Jalali, vor fast 4 Jahren