Textversion des Videos

Transkript Zerfallsgleichung und Zerfallsreihen

Hallo und herzlich willkommen bei Physik mit Kalle. Wir wollen uns heute aus dem Gebiet Atom- und Kernphysik mit der Zerfallsgleichung und den Zerfallsreihen beschäftigen. Für dieses Video solltet ihr bereits den Film über die Radioaktivität gesehen haben. Wir lernen heute: Was die Zerfallsgleichung genau beschreibt; wie sie genau aussieht; was eine Zerfallsreihe ist; und was man unter den 4 natürlichen Zerfallsreihen versteht. Dann wollen wir mal. Was beschreibt sie denn nun genau, unsere Zerfallsgleichung? Wie wir bereits im Video über die Radioaktivität gehört hatten, lässt sich ein radioaktiver Zerfall, da er spontan geschieht, nicht voraussagen. Wie kann also, wenn ich den Zerfall nicht vorhersagen kann, eine Formel aufstellen? Rechts seht ihr eine Animation, in der ein Zerfallsvorgang dargestellt ist. Im linken Kästchen werden 4 Atome betrachtet, im rechten 400. Und jede der Zeilen zeigt eine Möglichkeit, wie unser Zerfall ablaufen könnte. Wie ihr seht, sieht das Ganze auf der linken Seite relativ zufällig aus. Auf der rechten Seite scheint die Teilchenzahl jedoch in allen 4 Kästchen ungefähr gleichmäßig abzunehmen. Die Zeit wird über dem Kästchen in vielfachen der Halbwertszeit gezählt. Wenn sie verstrichen ist, also wenn die Zahl 1.0 da steht, dann ist nur noch die Hälfte der Teilchen in allen 4 Kästchen übrig. Nach zwei Halbwertszeiten ungefähr die Hälfte der Hälfte, also ein Viertel. Wir erinnern uns: Die Halbwertszeit eines radioaktiven Materials sagt aus, nach welcher Zeit nur noch die Hälfte der Stoffmenge nicht zerfallen ist. Je größer die Teilchenzahl ist, desto genauer stimmt die Vorhersage, die ich mithilfe der Halbwertszeit treffen kann. Ich kann mir also merken: Für große Teilchenzahlen N eines Stoffes gibt die Halbwertszeit an, nach welcher Zeit T½ die Hälfte von N zerfallen ist. Aufbauend auf dieser Voraussage, kann ich nun die Zerfallsgleichung aufstellen. Sie gibt mir an, wie viele Teilchen eines Stoffes zum Zeitpunkt T noch nicht zerfallen sind. Und wie sie genau lautet, dass wollen wir uns nun im nächsten Kapitel ansehen. Das Diagramm Links zeigt die Zahl der noch übrig gebliebenen radioaktiven Kerne aufgetragen gegen die Zeit T.  Die 3 verschiedenen Farben stehen für 3 verschiedene radioaktive Stoffe, von denen wir jeweils die gleiche Anfangsmenge N0 haben. Zeichnet man eine Linie zum Zeitpunkt t ein, dann kann ich an dieser Linie die verschiedenen Stoffmengen, N(t), meiner 3 Materialien ablesen. Und dieses N(t) ist genau, was ich mithilfe der Zerfallsgleichung ausrechnen kann. Es gibt 2 verschiedene Schreibweisen der Zerfallsgleichung. Meistens macht man in der Schule nur eine, dann könnt ihr die andere gleich wieder vergessen. Ich schreib sie trotzdem mal der Vollständigkeit halber beide hin. N(t)=N0×e-λ×t oder, anders geschrieben: N(t)=N0×½t/(T½). Dabei nenn man λ die Zerfallskonstante, N0 den Anfangsbestand radioaktiver Teilchen, also die Teilchenmenge zum Zeitpunkt t=0. T½ ist natürlich unsere Halbwertszeit und N(t) ist die Zahl der noch nicht zerfallenen Teilchen zum Zeitpunkt t. Die linke Form der Gleichung wird häufiger verwendet. Allerdings kennen wir das λ, diese Zerfallskonstante, noch nicht. Sie ist eine Materialkonstante, und da ich ja bei beiden Gleichungen dasselbe herausbekommen soll, versuchen wir, sie einfach mal auszurechnen, indem wir die beiden Gleichungen gleich setzen. Wir können dann gleich N0 kürzen und erhalten: e-λ×t=½t/(T½). Da beide Seiten der Gleichung positiv sind, darf ich auf beiden Seiten den ln anwenden. Ich erhalte dann -λ×t=(t/(T½))×((ln1)-(ln2)). Da der ln von eins 0 ist, kürzt sich damit auf beiden Seiten das - und das t weg und ich erhalte λ=(ln2)/(T½). Ich darf das so umformen, da der (ln½)x=x×(ln½) ist und der (ln½)=(ln1)-(ln2). Falls ihr damit Probleme habt, sucht nach den ln Rechenregeln im Mathematikbereich. Meine Materialkonstante λ kann ich also direkt aus der Halbwertszeit ausrechnen. Wie wir im Video über Radioaktivität gehört hatten, zerfällt ein radioaktives Element in kleinen Schritten, bis es bei einem stabilen Endprodukt angekommen ist. Wie man solch eine Zerfallsreihe auf einer Isotopentafel verfolgen kann, das wollen wir uns nun im nächsten Kapitel ansehen. Hier seht ihr eine Isotopentafel. Da es eine ganze Menge mehr Isotope als Elemente gibt, springen wir gleich mal, damit es nicht so unübersichtlich wird, zu einem schönen einfachen Ausschnitt. Auf dieser Isotopentafel geben uns die Farben an, was für eine Art von Kernen wir betrachten. Schwarz steht für stabile Kerne, rosane Kerne zerfallen per βminus Zerfall, blaue Kerne sind βplus Strahler, und gelbe Kerne sind α Strahler. Wie wir im Video über die Kerne gehört haben, zerfällt ein instabiler Kern in kleinen Schritten, bis er bei einem stabilen Endprodukt angekommen ist. Wir wollen uns das ganze mal am Beispiel von Pollonium215 ansehen. Pollonium215 ist gelb, also ein α Strahler. Es sendet also 2 Protonen und 2 Neutronen aus. Wir gehen also 2 Felder nach unten und 2 Felder nach links und finden uns wieder bei Blei211. Blei211 ist rosa eingetragen, also ebenfalls radioaktiv, aber ein βminus Strahler. Bei einem βminus Strahler verwandelt sich unter Aussendung eines Elektrons, ein Proton in ein Neutron. Wir müssen also 1 nach links und 1 nach oben und kommen bei Bismuth211 an. Bismuth211 ist, wie uns das Gelb sagt, wieder ein α Strahler. Wir können also eigentlich gleich weiter springen und kommen, wenn wir wieder 2 nach links und 2 nach unten gehen, zu unserer nächsten und vorletzten Station, Thalium207. Vorsicht! Nicht alle Isotopentafeln sind gleich geordnet. In unserer ist die x-Achse die Massenzahl und die Y-Achse die Protonenzahl. Wäre das umgekehrt, wäre der βminus Zerfall nicht nach oben und links, sondern nach unten und rechts. Überprüft eure Schritte einfach mit dem, was ihr wisst. βminus, plus ein Proton, minus ein Neutron, 1 nach links, eins nach oben, stimmt. Dann könnt ihr nichts falsch machen. Thalium207, unsere vorletzte Station, ist wieder rosa, also wieder ein βminus Strahler. Ihr kennt das Spiel: 1 nach links, 1 nach oben, und wir kommen bei Blei207 an. Blei207 ist schwarz, also stabil. Das heißt, wir haben hiermit das Ende unserer Zerfallsreihe erreicht. So, jetzt wo wir wissen, was eine Zerfallsreihe ist, wollen wir uns im letzten Kapitel noch kurz anschauen, was man unter den 4 natürlichen Zerfallsreihen versteht. So gut wie alle in der Natur vorkommenden radioaktiven Stoffe sind α oder β Strahler. Da bei einem β Zerfall die Massenzahl des Kerns gleich bleibt, bedeutet das, dass nur durch einen α Zerfall Masse verloren werden kann. Daher kann man die auf der Erde vorkommenden radioaktiven Materialien in 4 verschiedene Zerfallsreihen, nach ihrer Masse geordnet, einteilen. Und die wollen wir uns nun genauer ansehen. Die Erste ist die Uran-Radium-Reihe. Sie startet bei Uran238 und zerfällt, bis sie bei Blei206 angekommen ist. Alle zu ihr gehörigen Materialien haben eine Massenzahl, die man durch 4n+2 ausdrücken kann. Die zweite Reihe ist die Uran-Actinium-Reihe, im Bild grün. Sie beginnt bei Uran235 und zerfällt zu Blei207. Alle Isotope, die zu ihr gehören, haben die Massenzahl 4n+3. Die Nächste ist die im Bild blau eingezeichnete Thorium-Reihe. Man nahm ursprünglich an, dass sie bei Thorium232 beginnt, allerdings sind auch die Vorgängerelemente bis hin zum Plutonium244 auf der Erde vorhanden. Sie zerfällt zu Blei208, und die Formel für die Massenzahlen der Angehörigen dieser Reihe ist 4n. Die letzte natürliche Zerfallsreihe ist die sogenannte Neptunium-Reihe, die bei Neptunium237 beginnt, mit der Massenzahl 4n+1. Diese Reihe kommt allerdings auf der Erde nicht mehr komplett vor. Neptunium ist zwar langlebig, aber schon komplett zerfallen, und alle weiteren Schritte haben nur sehr kurze Halbwertszeiten, sind also ebenfalls schon zerfallen. Als Endkern dieser Reihe hatte man lange Zeit Bismuth209 betrachtet. Wie ihr seht, ist er auch in dieser Isotopentafel schwarz, also stabil, eingezeichnet. Erst vor wenigen entdeckte man, das Bismuth209 ebenfalls ein aplha Strahler ist, mit einer Halbwertszeit von 19 Trillionen Jahren. Der wahre Endpunkt der Neptunium-Reihe ist also Thalium205. Wir wollen noch mal wiederholen, was wir heute gelernt haben. Die Zerfallsgleichung sagt voraus, wie viele Teilchen einer radioaktiven Stoffmenge nach der Zeit t noch nicht zerfallen sind. Ihre Formel lautet: Die Teilchenzahl N zum Zeitpunkt t ist N(t)=N0×e-λ×t. Oder, anders geschrieben, N(t)=N0×½t/(T½). Das λ in der ersten Formel nennt man die Zerfallskonstante eines Stoffes und man kann sie einfach aus der Halbwertszeit berechnen: λ=(ln2)/(T½). Die Zerfallsreihe eines bestimmten Isotops kann mithilfe der Isotopentafel vorausgesagt werden. Die vier natürlichen Zerfallsreihen sind: Die Uran-Radium-Reihe mit der Massenzahl 4n+2, die Uran-Actinium-Reihe mit der Massenzahl 4n+3, die Thorium-Reihe mit der Massenzahl 4n und die Neptunium-Reihe mit der Massenzahl 4n+1. So, das war es wieder für heute. Ich hoffe ich konnte euch helfen. Vielen Dank fürs Zuschauen, bleibt bis zum nächsten Mal, euer Kalle!    

Informationen zum Video