Advent, Advent, 1 Monat weihnachtliche Laufzeit geschenkt.

Nicht bis zur Bescherung warten, Aktion nur gültig bis zum 18.12.2016!

Textversion des Videos

Transkript Unbestimmtheitsrelation

Hallo und herzlich willkommen. Ich erkläre hier kurz ein Modell, was verständlich machen soll, was es mit der Unbestimmtheitsrelation und der Quantentheorie auf sich hat. Du solltest die Interferenzphänomene bei der Überlagerung von Wellen kennen, die Erklärung der akustischen Unschärfe, die Plancksche Beziehung, die De-Broglie-Wellenlänge und über die Quantelung elektromagnetischer Strahlung, genauso wie über die Welleneigenschaften von Teilchen, bescheid wissen. Mit der Bestätigung der Hypothese des Wellencharakters von Teilchen und des Quanten- oder Teilchencharakters elektromagnetischer Wellen, ergibt sich notwendig, dass man Modelle zur Beschreibung konstruieren muss, die kaum noch etwas mit unseren Alltagsvorstellungen verbindet. Eine schmale Brücke haben wir allenfalls mit der Vorstellung von Photonen, genauso wie Elementarteilchen, als sogenannte Wellenpakete, die man eigentlich Paketwellen oder Knotenwellen nennen müsste. Wir wissen ja, dass sich solche Wellenpakete als Resultanten von Welleninterferenz bilden können. Denn wenn man mehrere Wellen verschiedener, nicht zu weit auseinanderliegender Frequenzen überlagert, können Schwebungen entstehen. Und je mehr solcher Wellen aus einem begrenzten Frequenzintervall überlagert werden, desto klarer sind die resultierenden Amplitudenbäuche oder Gruppen voneinander abgesetzt. Und desto weniger sind es auch. Wenn wir dann alle möglichen Frequenzen innerhalb eines begrenzten Intervalls, das heißt also unendlich viele verschiedene überlagern, erhalten wir eine einzelne Gruppe, die sich wie ein vereinzeltes Paket in Raum und Zeit bewegt. Sicher ließe sich dieses Wellenpaket isoliert beschreiben. Mit einer bestimmten Gesamtlänge, einer bestimmten Frequenz, einem bestimmten Amplitudenverlauf und davor und dahinter nun so etwas wie eine Nullwelle. Aber das wäre willkürlich und wir müssten obendrein doch wieder die Bewegung dieses Pakets in Zeit oder Raum mathematisch beschreiben. Wir kommen also gar nicht umhin, die ganze Welle als eine Einheit zu beschreiben. Sie besteht ja nicht aus 3 Stücken, sondern ist eine. Darum hatte ich vorhin gesagt, man sollte diese Wellenform vielleicht eher Paketwelle oder Knotenwelle nennen. Da ihre charakteristische Amplitudenform die einer unendlich langen Geraden mit einer einzigen knotenartigen Verdickung ist. Dann bleibt uns aber nur übrig, die Welle als die Resultante einer Überlagerung unendlich vieler Wellen zu beschreiben, die sie auch ist. Da das Wellenpaket nur dann entsteht, wenn die überlagerten Wellen aus einem begrenzten Frequenzintervall stammen, ergibt sich eine Bedingung für die angeführte Formel. Die Frequenzen liegen in einem symmetrischen Bereich um eine mittlere Frequenz. Vom Phänomen der akustischen Unschärfe wissen wir, das es eine Beziehung zwischen der Breite des Frequenzintervalls und der zeitlichen Erstreckung des Wellenpakets gibt. Je breiter das Frequenzband aus dem die Wellen überlagern, umso kürzer die Dauer der resultierenden Schwingung. Und natürlich umgekehrt. Von Unschärfe muss man ja hier sprechen, weil wir niemals alle Frequenzen der beteiligten Wellen identifizieren könnten. Es sind ja unendlich viele. Das gilt für alle Wellenpakete dieser Art, nicht nur für Schallwellen und es ist der Schlüssel zum Verständnis der Heisenbergschen Unbestimmtheitsrelation. Wir hatten die allgemeinen Beziehungen für die Energiequanten und die Teilchenwellenlänge formuliert, müssen aber nun zugestehen, dass es Vereinfachungen sind. Tatsächlich sind ja nicht nur die Frequenzen unserer knotigen Welle über einen Bereich verschmiert, sondern damit zugleich auch die Größe des Energiequantums und des Impulses des Teilchens. Und natürlich ist das nicht mehr so überraschend, wenn man einmal anerkannt hat, dass die Energie von der Frequenz abhängt. Dann bedeutet eine Zusammensetzung des als Wellenpakets modellierten Objekts aus unendlich vielen Wellen unterschiedlicher Frequenz, dass es unendlich viele verschiedene Energiemengen hat. Und aus der De-Broglie-Formel folgt, dass es dann auch unendlich viele verschiedene Impulsquante hat. Diese Eigentümlichkeit führt schließlich auf das Prinzip der Komplementarität bestimmter Größenpaare in der Quantentheorie. Setzen wir die aus der Akustik bekannte Unschärfenbeziehung allgemein für Welleninterferenzen voraus, erhalten wir mit der Formel für die Unschärfe des Energiequantums einen Ausdruck, an dem ablesbar ist, dass die Bestimmung der Bewegungszeit umso ungenauer wird, je genauer wir das Energiequantum messen. Je kleiner wir die Unschärfe delta W eingrenzen können, desto weiter läuft uns das Unschärfemaß für die Zeit delta t auseinander. Außerdem erhalten wir mit der Formel für die Unschärfe der Impulsgröße einen Ausdruck, an dem ablesbar ist, dass die Bestimmung des Orts umso ungenauer wird, je genauer wir den Impuls messen. Je kleiner wir die Unschärfe delta p eingrenzen, desto weiter läuft das Unbestimmtheitsmaß für den Ort delta s auseinander. Da diese Abhängigkeiten symmetrisch sind, gilt natürlich auch das Umgekehrte. Genaue Ortsbestimmung lässt die Impulsgröße verschwimmen, genaue Zeitmessung die Energiemenge. Wir können also niemals alle messbaren Parameter unseres Objekts zugleich mit gewünschter Genauigkeit bestimmen. Das ist die mit der klassischen Physik nicht mehr erklärbare Konsequenz aus der Heisenbergschen Unbestimmtheitsrelation. Genauere Untersuchung ergibt nun, dass die Grenze noch etwas kleiner ist, als hier angegeben. Wenn nämlich die Hüllkurve dieses Wellenpakets von einer Gaussfunktion beschrieben wird, gilt die Unschärfe delta Omega x delta t = 1/2. Wobei Omega natürlich die Kreisfrequenz Omega = 2 pi x f ist. Damit ergibt sich für die quantenphysikalische Unbestimmtheit eine leicht korrigierte Beziehung. Außerdem ist natürlich selbstverständlich, dass wir mit diesen Beziehungen eine untere Grenze des Unbestimmtheitsmaßes beschreiben. Darum gilt allgemeiner, dass die Produkte der komplementären Größenunschärfen nicht kleiner als h Strich halbe sein können. Ich will mal kurz zusammenfassen. Die beiden Formulierungen der Heisenbergschen Unschärfebeziehungen beruhen auf der Modellierung der Teilchenwellen als Überlagerung unendlich vieler Wellen verschiedener Frequenzen aus einem Intervall. Damit gilt die allgemeine Unschärfebeziehung für Wellenpakete. Die Anwendung dieser Beziehung auf die Plancksche Formel, beziehungsweise die De-Broglie-Formel in angepasster Form, ergibt Ausdrücke die beschreiben, dass je 2 Größen sich in der erreichbaren Maßgenauigkeit komplementär zueinander verhalten. Energie und Zeit beziehungsweise Impuls und Ort. Bei diesen Paaren lassen sich niemals beide zugleich beliebig genau bestimmen. Soviel für diesmal. Viel Vergnügen beim Durchdenken und Verstehen und vielleicht bis zum nächsten Video.

Informationen zum Video
2 Kommentare
  1. Default

    Guten Morgen, David Brunner1000,

    läßt sich ein auffälliger Punkt nennen, an dem Dein Verständnis strapaziert wird ? Dann könnte ich vielleicht zur Aufklärung verhelfen.

    Grüße,
    kalo

    Von Kalo, vor fast 2 Jahren
  2. Default

    Wow das hat mich noch mehr verwirrt...

    Von David Brunner1000, vor fast 2 Jahren