Advent, Advent, 1 Monat weihnachtliche Laufzeit geschenkt.

Nicht bis zur Bescherung warten, Aktion nur gültig bis zum 18.12.2016!

Textversion des Videos

Transkript Spezifische Wärmekapazität eines idealen Gases

Hallo, ich bin euer Physik Siggi. Heute werde ich euch die 2 Arten der spezifischen Wärmekapazität eines idealen Gases darstellen. Dafür werdet ihr zunächst wiederholen, was Wärme ist, und danach verstehen, was die Wärmekapazität und die spezifische Wärmekapazität eigentlich darstellen. Letztendlich werden wir dies dann auf das ideale Gas übertragen. Zum Schluss wiederholen wir noch alle gelernten Formen. Dafür müsst ihr natürlich wissen, was ein ideales Gas ist und was Wärme ist. Außerdem solltet ihr mit molekularen Größen umgehen können. Für alles findet ihr bei mir einen Film. Im letzten Film dieser Reihe, "Wärmeenergie und innere Energie", habe ich euch erklärt, was Wärme ist. Sie ist die Energie, die von einem heißen auf einen kalten Körper übertragen wird. Zum Beispiel wird hier von der Herdplatte zum Wasser Energie übertragen. Diese Energie ist Wärmeenergie. Das kalte Wasser wird warm. Wie viel Wärme Q ist jedoch nötig, um das Wasser um ΔT zu erwärmen? Wir wissen, dass die Wärme proportional zur Temperaturerhöhung ist. Steigt die zugeführte Wärme, so steigt auch die Temperatur. Die Wärmekapazität c ist der Quotient aus der Wärme und der Temperaturänderung. Dieser ist konstant. Wollen wir mehr Wasser erwärmen, so müssen wir auch mehr Wärme hineinstecken. Zusammen gilt also: QΔT×m. Also gilt, dass die Wärme geteilt durch die Temperaturänderung und die Masse konstant bleibt, solange wir immer das gleiche Material erwärmen. Die Erfahrung zeigt nämlich, dass die Temperatur für alle Materialien unterschiedlich schnell steigt, auch wenn sie die gleiche Masse haben und ihnen die gleiche Wärme zugeführt wurde. Zum Beispiel erwärmt sich Eisen leichter als Wasser. Somit ist die obige Konstante c für alle Materialien unterschiedlich. Sie ist eine Materialeigenschaft und heißt spezifische Wärmekapazität. Ein Beispiel: 300 g Wasser muss man mit einem 1000 W starken Tauchsieder 25,2 s lang erwärmen, um es von 0 °C auf 20 °C zu erhitzen. Wie groß ist die spezifische Wärmekapazität des Wassers? Die übertragene Wärmeenergie ist in etwa die Leistung des Tauchsieders × der Zeit, also 25200 J. Die erwärmte Masse sind 300 g und der Temperaturunterschied sind 20 °C, was genau 20 K entspricht. Einsetzen und Ausrechnen bringen uns: c=4,2 J/(gK). Die spezifische Wärmekapazität von Eisen liegt dagegen bei 0,45 J/(gK). Eisen benötigt also nur 0,45 J, um 1 g um genau 1 K zu erhitzen. Wasser benötigt dagegen 4,2 J, um dieselbe Menge um dieselbe Temperatur zu erhöhen. Die spezifische Wärmekapazität beschreibt also, wie gut man ein Material erwärmen kann. Für die Interessierten: Die spezifische Wärmekapazität eines Materials ändert sich auch mit der Temperatur, jedoch so wenig, dass sie für feste Stoffe zwischen -40 °C bis 100 °C als konstant angenommen werden kann, und für flüssige Stoffe zwischen 0 °C und 40 °C etwa konstant ist. Ansonsten muss man eine Temperaturabhängigkeit beachten. Wie verhält sich die spezifische Wärmekapazität bei Gasen? Wir wissen aus dem Gasgesetz, dass eine Erwärmung eine Änderung des Drucks oder eine Änderung des Volumens des idealen Gases zur Folge hat - natürlich nur, wenn die Teilchenzahl dabei gleich bleibt. Deswegen unterscheiden wir zwischen 2 Arten der spezifischen Wärmekapazität bei idealen Gasen: erstens, wenn das Volumen des Gases beim Erwärmen gleich bleibt, und somit der Druck steigt. Dann gilt für die zugeführte Wärme das Gleiche wie im festen Körper [Q=cv×m×ΔT]. Cv deswegen, weil das Volumen v konstant bleibt. Der zweite Fall ist, wenn der Druck des Gases gleich bleibt und somit das Volumen größer wird. In diesem Fall ist die Wärmekapazität eine andere, weil das Gas noch Volumenarbeit verrichtet [Q=cp×m×ΔT]. Es verändert sich ja, und dies ist eine Form von Arbeit. Die Volumenarbeit (W) = dem Druck (p) × der Volumenänderung (ΔV). Dies könnt ihr einfach herleiten. Ihr wisst, dass die Arbeit Kraft (F) × Wegänderung (s) ist und dass Druck p = Kraft pro Fläche ist [p=F/A]. Umgestellt ist also die Kraft gleich Druck × Wegänderung [F=p×A]. Setzen wir dies ein, so erhalten wir W=p×A×Δs=p×ΔV, also Druck × Volumenänderung. Die zugeführte Wärme Q (=cp×m×ΔT) wird also sowohl in die Temperaturerhöhung (cv×m×ΔT) als auch in die Volumenarbeit (p×ΔV) gesteckt. Aus dieser letzten Erkenntnis können wir nun einen Zusammenhang zwischen beiden spezifischen Kapazitäten ermitteln. Wir wissen aus dem Gasgesetz, dass Druck × Volumenänderung = Teilchenzahl × Boltzmann-Konstante × Temperaturänderung ist [p×ΔV=N×KB×ΔT]. Die Masse des Gases ist die Masse eines Teilchens × die Teilchenzahl N. Also können wir N mit m/mi ersetzen. Setzen wir nun dies alles in unsere Gleichung ein, so können wir links und rechts durch m×ΔT teilen. Und wir erhalten: cp=cv+(KB/mi). KB/mi wird als Gaskonstante (Rs) bezeichnet, Rs ist jedoch nicht zu verwechseln mit dem R aus der Gasgleichung für molekulare Größen: p×V=n×R×T. Wir wissen, dass die universelle Gaskonstante R gleich Avogadrozahl × Boltzmann-Konstante ist [R=NA×KB]. Dies können wir umstellen. Setzen wir die Avogadrozahl in die Definition der Masse eines Teilchens ein, so erhalten wir nach Umformen, dass die spezielle Gaskonstante gleich der universellen durch die molare Masse ist. Dies bringt uns zum letzten Punkt. Man kann die spezifische Wärmekapazität auch in molekularen Größen beschreiben. Hier wird die Wärmekapazität einfach anstatt auf Masse auf die Stoffmenge bezogen, also ist sie gleich Wärme durch Stoffmenge × Temperaturänderung. Sie wird dann molare Wärmekapazität genannt. Teilen wir beide durcheinander, so erhalten wir ihren Zusammenhang: Die molare Wärmekapazität = der spezifischen × Masse durch Stoffmenge [cm=c×(m/n)], also gleich der spezifischen × molare Masse [=c×Mm]. Wir wiederholen. Die Wärmekapazität ist die zugeführte Wärme durch die Temperaturänderung. Die spezifische Wärmekapazität ist die zugeführte Wärme pro Masse und pro Temperaturänderung, also die Wärmekapazität bezogen auf die Masse. Die molare Wärmekapazität ist die zugeführte Wärme pro Mol und pro Temperaturänderung, also die Wärmekapazität bezogen auf die Stoffmenge. Der Zusammenhang zwischen molarer und spezifischer Wärmekapazität geht über die molare Masse. Beim idealen Gas gibt es 2 spezifische Wärmekapazitäten. Einerseits, wenn das Volumen konstant ist, dann gilt Q=cv×m×ΔT, andererseits, wenn der Druck konstant ist, dann gilt für die zugeführte Wärme Q=cp×m×ΔT=cv×m×ΔT+p×ΔV. Der Zusammenhang zwischen beiden ist folgender: cp=cv+Rs, wobei Rs die spezielle Gaskonstante ist und über die molare Masse mit der universellen Gaskonstante verknüpft ist. Übrigens wird der Quotient aus beiden spezifischen Wärmekapazitäten Adiabatenkoeffizient genannt. Das war's für heute. Im nächsten Film werde ich euch den 1. Hauptsatz der Wärmelehre nahebringen. Danke für die Aufmerksamkeit!

Informationen zum Video
10 Kommentare
  1. Default

    ich versteh nichts, warum braucht man diese ganzen Formeln???;(((

    Von Angelinaalizee, vor 10 Monaten
  2. Default

    hat sich erledigt^^

    Von Lea Seyda, vor mehr als 2 Jahren
  3. Default

    Q ist ja Wärme
    und was ist c?

    Von Lea Seyda, vor mehr als 2 Jahren
  4. Default

    ach da unten steht schon die antwort. hat sich erledigt

    Von Lea Seyda, vor mehr als 2 Jahren
  5. Default

    20 grad entsprechen doch garnicht 20 K
    sondern 273,15+20=293,15K

    Von Lea Seyda, vor mehr als 2 Jahren
  1. Nikolai

    @Merabell: Dort steht NICHT, dass die Wärmekapazität von Wasser 4,2 J ist. Siggi schreibt das man eine eine Energiemenge von 4,2 J benötigt um 1g Wasser um 1K zu erwärmen.
    Erinnerst du dich an die Definition der Wärmekapazität?
    Die Wärmekapazität gibt an, wieviel Wärme man einem Stoff zuführen muss um 1g des Stoffes um 1K zu erwärmen.
    Also bedeutet Siggis Aussage nichts anderes als: Wasser hat eine Wärmekapazität von 4,2 J/(g*K).
    Lg

    Von Nikolai P., vor fast 3 Jahren
  2. Default

    Die Einheit der spezifischen Wärmekapazität ist doch J/g*K wieso steht dann da nur Joule? (3,26s)

    Von Merabell A., vor fast 3 Jahren
  3. Default

    Alles klar, macht Sinn! Danke :D

    Von Sunny 1, vor mehr als 3 Jahren
  4. Nikolai

    @Sunny: Es handelt sich hier um eine Temperaturdifferenz. Temperaturdifferenzen haben in Kelvin und Grad Celsius den gleichen Betrag. Rechne das doch mal nach: Der Temperaturunterschied zwischen 20°C und 30°C beträgt 10°C. Wenn du jetzt die 20°C und 30°C in Kelvin umrechnest und erneut die Differenz bildest wirst du 10K erhalten!

    Von Nikolai P., vor mehr als 3 Jahren
  5. Default

    Warum sind 20°C = 20K? Das wären doch eigentlich 293,15K?

    Von Sunny 1, vor mehr als 3 Jahren
Mehr Kommentare