Advent, Advent, 1 Monat weihnachtliche Laufzeit geschenkt.

Nicht bis zur Bescherung warten, Aktion nur gültig bis zum 18.12.2016!

Textversion des Videos

Transkript Resonanz und Resonanzkatastrophe

Hallo und herzlich willkommen zu Physik mit Kalle! Wir wollen uns heute aus dem Gebiet Schwingungen und Wellen mit der Resonanz und der Resonanzkatastrophe beschäftigen. Für dieses Video solltet ihr bereits die Filme über die gedämpfte mechanische Schwingung und die erzwungene mechanische Schwingung gesehen haben. Wir lernen heute, was Resonanz ist, was eine Resonanzkatastrophe ist und, um besser zu verstehen, was eine Resonanzkatastrophe ist, werden wir uns das Beispiel einer Brücke im Wind ansehen. Dann mal los. Was ist denn nun Resonanz? Wir hatten ja schon im Video über die erzwungene Schwingung festgestellt: Wenn die Kreisfrequenz meines Erregers gleich der Eigenfrequenz des Resonators ist, schwingt dieser mit der höchstmöglichen Amplitude. Dies nennt man den Resonanzfall. Oder anders ausgedrückt: Wenn einem schwingfähigen System periodisch mit seiner Eigenfrequenz Energie zugeführt wird, spricht man von Resonanz. Unserem Oszillator wird also periodisch immer weiter Energie zugeführt. Und da das Einzige, was ihn bremst, seine Dämpfung ist, kann das bei nur sehr kleiner Dämpfung bedeuten, dass unser Oszillator sehr hohe Amplituden erreichen kann. Was das für Folgen haben kann, sehen wir im nächsten Kapitel. Hier seht ihr ein Diagramm, in dem ihr die Höhe der Amplitude in Abhängigkeit vom Verhältnis Erregerfrequenz zur Resonatoreigenfrequenz ablesen könnt. Es sind Kurven für verschiedene Werte von Δ eingetragen, also für verschieden starke Dämpfungen, denn Δ war ja die Dämpfungskonstante β/2× die Masse. Wir machen 2 Beobachtungen: 1. Die blaue Kurve, die die Kurve der Amplitudenmaxima für alle Dämpfungswerte ist, zeigt uns: Je stärker die Dämpfung, desto kleiner die Frequenz, bei der das Amplitudenmaxima erreicht wird. Das macht auch Sinn, da ein System ja umso langsamer schwingt, umso stärker es gedämpft ist. Die 2. Beobachtung machen wir an der roten Kurve, die für die Dämpfung Δ=0 steht. Hier geht nämlich, falls die Erregerfrequenz gleich der Resonatoreigenfrequenz ist, die Amplitude theoretisch bis ins Unendliche. Je leichter also die Dämpfung ist, desto mehr Energie kann ich in meinem System speichern. Da kein System unbegrenzte Energie verträgt, kann ich mir leicht vorstellen: Die zugeführte Energie kann ich zwar oft durch die Dämpfung wieder abführen, unter bestimmten Umständen (z. B. eben eine sehr schwache Dämpfung) kann sich die Amplitude meines Resonators jedoch so weit hochschaukeln, dass sich das System zerstört. Und dies nennt man eine Resonanzkatastrophe. Beispiele dafür sind schnell gefunden. Ein Federpendel zum Beispiel könnt ihr so lange zum stärker Schwingen bringen, bis euch die Feder reißt. Aber ein spektakuläreres Beispiel, nämlich den Fall der Tacoma Narrows Bridge, wollen wir uns jetzt im letzten Kapitel ansehen. Die Tacoma Narrows Bridge war eine Hängebrücke, die 1940 eröffnet wurde, relativ lang, schmal und leicht gebaut war, was ungünstige Folgen hatte. Schon bei leichtem Wind bildeten sich hinter den Trägern Luftwirbel, die sich periodisch änderten und fast die Eigenfrequenz der Brücke hatten. Diese versetzten die Brücke in Resonanz und ließen sie stark schwingen. Dadurch wurde die Brücke eine Zeit lang sogar zu einem Touristenmagneten. Sie wurde aber, nur 7 Monate nach ihrer Eröffnung, zerstört, und zwar durch ein Phänomen, das zwar keine Resonanzkatastrophe ist, aber dieser sehr ähnlich ist, weswegen wir es zur Unterscheidung auch als Beispiel gewählt haben. Als nämlich das erste Mal ein richtig starker Wind aufkam, verfiel die Brücke in einen anderen Schwingungsmodus, nämlich Torsionsschwingungen. Das heißt, die Fahrbahn verdrehte sich wie eine Schraube. Wie ihr euch mithilfe des Videos vielleicht vorstellen könnt, kann eine Torsionsschwingung einer Brücke mit Seitenwind verstärkt werden, auch ohne, dass der Wind immer in der richtigen Frequenz dazu pustet. Dadurch schaukelten sich also die Torsionsschwingungen der Fahrbahn immer weiter auf, bis die Brücke schließlich riss und einstürzte. Wir hatten ja am Anfang gesagt: Resonanz ist, wenn ein Oszillator in seiner Eigenfrequenz angeregt wird. Nun brauchen wir aber einen weiteren Begriff, nämlich den für einen Oszillator, der sich unter passenden Umständen hochschaukeln kann, auch wenn die auf ihn wirkende Kraft nicht periodisch mit seiner Eigenfrequenz wirkt. Man nennt so etwas einen selbsterregten Oszillator. Und das schreiben wir uns gleich einmal auf, damit wir damit nicht durcheinander kommen. Wir unterscheiden also zwischen Resonanzkatastrophe, bei der unser Resonator von einem schwingenden Erreger angestoßen wird, und dem selbsterregten Oszillator, der eine nicht schwingende Energiequelle hat. Nun brauchen wir bloß noch ein paar richtige Beispiele für Resonanzkatastrophen. Als Erstes wären da Soldaten, die im Gleichmarsch über eine Brücke laufen. Und das ist kein Scherz. Schon mehrere Brücken sind auf diese Art zum Einsturz gekommen; und es ist in Deutschland auch verboten, im Gleichmarsch über eine Brücke zu laufen. Ein weiteres Beispiel, das ihr vielleicht schon gesehen habt, ist das sogenannte Zersingen von Glas. Wenn ihr die Eigenfrequenz eines Glases kennt und es damit beschallt und die Lautstärke hochdreht, wird das Glas zerspringen. Wir wollen noch einmal wiederholen, was wir heute gelernt haben. Von Resonanz spricht man, wenn einem schwingfähigen System periodisch mit seiner Eigenfrequenz Energie zugeführt wird. Schaukelt sich die Amplitude dabei so hoch auf, dass das System zerstört wird, so spricht man von einer Resonanzkatastrophe. Man unterscheidet hier (Vorsicht: Verwechslungsgefahr!) anhand der Energiequelle. Zerstörung durch eine schwingende Energiequelle nennt man Resonanzkatastrophe, und ein selbsterregter Oszillator lässt sich auch durch eine nicht schwingende Energiequelle zur Zerstörung bringen.   So, das war es schon wieder für heute. Ich hoffe, ich konnte euch helfen. Vielen Dank fürs Zuschauen, vielleicht bis zum nächsten Mal, Euer Kalle

Informationen zum Video
1 Kommentar
  1. Default

    Super Video,dankeschön!

    Von Makineli, vor etwa 5 Jahren