Textversion des Videos

Transkript Plattenkondensator – homogenes elektrisches Feld

Hallo und herzlich willkommen zu Physik mit Kalle! Unser Thema heute heißt, wieder aus dem Gebiet "Elektrizität und Magnetismus": "Der Plattenkondensator, Teil 1 - das homogene elektrische Feld". Für dieses Video solltet ihr bereits die Videos zum elektrischen Feld und zur elektrischen Feldstärke gesehen haben. Wir lernen heute, was ein Plattenkondensator eigentlich ist, wieso er ein homogenes elektrisches Feld erzeugt und was das eigentlich ist, und zum Schluss wollen wir uns noch die genaue Formel für die Feldstärke im Plattenkondensator ansehen. Und los geht's zur 1. Frage: Was ist ein Plattenkondensator? Das kann man zum Glück relativ einfach beantworten. Ein Plattenkondensator ist ein elektrisches Bauelement, das elektrische Ladung speichert. Und es besteht aus 2 Elektroden, das heißt 2 leitenden Flächen, die meist relativ nah beieinander sind, und einem Dielektrikum, also einem nicht leitenden Material, das sich zwischen den Flächen befindet. In den meisten Fällen ist das einfach Luft. Wie das Ganze dann funktioniert, ist zum Glück nicht so kompliziert. Wir nehmen einfach 2 leitende Flächen, also 2 Metallplatten zum Beispiel, bringen sie nah aneinander und schließen eine Spannung an. Hier seht ihr eine Animation. Wenn ich den Schalter schließe, liegt die Spannung an den Kondensatorplatten an und sie beginnen sich aufzuladen. Grün steht übrigens bei mir immer für negative Ladung und Rot für positive. Wie ihr wisst, erzeugen elektrische Ladungen elektrische Felder, das heißt, mein Plattenkondensator wird wohl ein elektrisches Feld erzeugen. Was ist aber nun das besondere am elektrischen Feld des Plattenkondensators? Das wollen wir uns im nächsten Kapitel ansehen. Im Inneren eines Plattenkondensators herrscht ein homogenes elektrisches Feld. Aber warum ist das so und vor allem, was bedeutet das? Wir haben uns das Folgende schon im Video über das elektrische Feld angesehen, wollen uns jetzt aber noch mal genauer damit beschäftigen. Das Feld zwischen 2 Punktladungen sieht so aus. Wenn ich nun stattdessen links 2 positive und rechts 2 negative Ladungen hinsetze, erhalte ich ungefähr dieses Bild. Wie man sieht, sind schon hier, in der Mitte zwischen den 4 Ladungen, die Feldlinien fast parallel. Um nun eine Vorstellung davon zu erhalten, wie das elektrische Feld in einem Plattenkondensator aussieht, der ja unvorstellbar viele elektrische Ladungen auf beiden Seiten hat, wollen wir nun noch einmal das elektrische Feld zwischen 2 langen Ketten aus negativen und positiven Ladungen ansehen. Das sah so aus. Wie ihr seht, sind schon bei 2 vergleichsweise kleinen Ketten aus Ladungen die Feldlinien in der Mitte parallel - und das ist das Besondere am Feld im Inneren eines Plattenkondensators. Wir merken uns also: Im Inneren eines Plattenkondensators herrscht ein homogenes elektrisches Feld. Und der Schluss, den wir aus diesen Feldlinien ziehen können, ist: Ein homogenes elektrisches Feld bedeutet: Im Inneren dieses Feldes ist die Feldstärke, und damit auch die Kraft auf eine Ladung, überall gleich groß. Wie groß Feldstärke und Kraft nun aber genau sind, das wollen wir uns jetzt im letzten Kapitel ansehen. Zum besseren Verständnis zeichne ich schnell noch einmal den Schaltkreis mit dem geladenen Plattenkondensator auf. Bei der Stromquelle steht übrigens der kleine, dicke Strich für die Minusseite, deswegen ist oben auch die linke Platte grün, also negativ geladen, und der lange, dünne Strich steht für die Plusseite, deswegen ist oben die rechte Platte auch rot, also positiv geladen. Zwischen unseren beiden Platten liegt die Spannung U und die Entfernung zwischen den beiden Platten kennzeichnen wir mit dem Buchstaben d. Wie wir uns erinnern, hatte die elektrische Feldstärke am Ort R 2 verschiedene Einheitenkombinationen. Sie konnte entweder in N/C angegeben werden oder, und das ist für uns deutlich interessanter, in V/m. Und damit kann man die Formel für die Feldstärke im Plattenkondensator eigentlich sofort sehen: E=U/d. Wenn ich also zum Beispiel 1 V anlege und die beiden Platten 1 m entfernt sind, ist meine Feldstärke 1 V/m. Lege ich 100 V an und mache die Entfernung noch 1 cm groß, dann sind wir bei 10000 V/m. Die auf eine Ladung im Plattenkondensator wirkende Coulombkraft ist ähnlich einfach auszurechnen. Wie wir uns erinnern, ist die Coulombkraft die Feldstärke × die Ladung. Das heißt, auf eine Ladung Q wirkt in unserem Plattenkondensator die Kraft: (U×Q)/d. So, wir wollen noch mal zusammenfassen, was wir heute gelernt haben. Ein Plattenkondensator ist ein elektrisches Bauelement, mit dem man elektrische Ladungen speichern kann. Er besteht aus 2 leitenden Flächen, die man Elektroden nennt, und dazwischen befindet sich ein Dielektrikum, das heißt ein nicht leitender Stoff. Im Innern eines Plattenkondensators herrscht ein homogenes elektrisches Feld, das bedeutet, die Feldstärke und die Coulombkraft sind überall gleich groß. Die Feldstärke E im Plattenkondensator ist der Quotient aus der anliegenden Spannung U und der Entfernung zwischen den Platten d. Die Coulombkraft, die auf eine Ladung Q im Plattenkondensator wirkt, ist: F=(U×Q)/d. So, das war's schon wieder für heute. Ich hoffe, ich konnte euch helfen. Vielen Dank fürs Zuschauen, vielleicht bis zum nächsten Mal, euer Kalle!

Informationen zum Video