Advent, Advent, 1 Monat weihnachtliche Laufzeit geschenkt.

Nicht bis zur Bescherung warten, Aktion nur gültig bis zum 18.12.2016!

Textversion des Videos

Transkript Photoeffekt – Auswertung der Messung mit der Gegenfeldmethode

Hallo und herzlich willkommen zum Video über die Auswertung einer Messung, die zum Thema Messung von h mit der Gegenfeldmethode gemacht wurde. Wir werden in diesem Video neben h auch noch die Austrittsarbeit des Metalls der Photokathode bestimmen. Du solltest unbedingt vor diesem Video das Video Photoeffekt und das Video Photoeffekt, Messung des planckschen Wirkungsquantum, Prinzip der Gegenfeldmethode gesehen haben. Wir sehen uns hier jetzt in der glücklichen Lage, dass wir bereits die Ergebnisse einer Messung vorliegen haben. Wir haben 3 Wellenlängen in Nanometer mittels des Frequenzfilters ausgewählt und die dazugehörige Gegenspannung, mit dem Versuchsaufbau, der im Prinzip der Gegenfeldmethode beschrieben wird, gemessen. Oben ist Lambda in Nanometer und unten ist U in Volt. Dann haben wir das erste Wertepaar 667,8 nm gehört zu 0,81 Volt. Und 492,2 nm gehört zu 1,48 Volt. Und 402,6 nm gehört zu 2,03 Volt. Aus diesen experimentellen Daten, sollen wir jetzt das plancksche Wirkungsquantum h und die Austrittsarbeit Wk des Metalls bestimmen. Dazu brauchen wir noch die Einstein-Gleichung Ekin=h×f-Wk. Wir hatten bereits die Erkenntnis, dass wir mithilfe der Gegenfeldmethode, die kinetische Energie der Elektrone Ekin messen können und zwar ist das nichts anderes, als Ekin=e×U, wobei U die Gegenspannung ist. Des Weiteren hatten wir die Erkenntnis, dass die steigende Funktion Ekin von f gleich dem planckschen Wirkungsquantum h ist. Und der Achsenabschnitt dieser Funktion Wk, die Austrittsarbeit ist. Wenn wir die 3 Messgrößen mal in einem Graphen skizzieren und sie mit einer Geraden verbinden, wird das sofort ersichtlich. Wir haben aber noch ein kleines Problem. Und zwar haben wir die Wellenlänge der Photonen gemessen. In der Formel steht aber die Frequenz. Das heißt, wir müssen zunächst die Wellenlänge in die Frequenz umrechnen. Wir haben gelernt, dass c=λ×f ist, wobei c die Lichtgeschwindigkeit, λ die Wellenlänge und f die Frequenz ist. Dann ist f=c÷λ. Und wenn wir das mit allen Werten durchziehen ergänzt sich die Tabelle zu: f in 10 hoch 14 Hz: 4,49, 6,09 und 7,45. Jetzt haben wir alles was wir brauchen. Um die Steigung einer Geraden zu ermitteln, müssen wir zunächst das Steigungsdreieck zeichnen. 2 Punkte reichen uns dazu. Um den Fehler zu minimieren, ist es gut 2 Punkte zu nehmen, die möglichst weit voneinander entfernt sind. Wir nehmen also das erste und das letzte Wertepaar. h=m=ΔE÷Δf. Und ΔE ist 2,03 eV -0,81 eV ist 1,22 eV. Und Δf ist 7,45-4,49(10 hoch 14 Hz)=2,96×10 hoch 14 Hz. Rechnen wir das aus, landen wir bei h=4,1×10 hoch -15 eVs. Das können wir noch in Joulesekunden umrechnen, indem wir mit der Elementarladung durchmultiplizieren. Also das Ganze ×1,6×10 hoch -19 Coulomb nehmen, dann kommt raus 6,6×10 -34 Js. Das kommt sehr genau an den richtigen Wert hin. Jetzt berechnen wir noch die Austrittsarbeit des Metalls. Mittels einer Tabelle können wir das Metall damit sogar identifizieren. Wenn wir die Austrittsarbeit berechnen wollen, brauchen wir nur den Achsenabschnitt der Funktion Ekin von f berechnen. Dazu brauchen wir die Einstein-Gleichung nur nach Wk aufzulösen und ein beliebiges Wertepaar einzusetzen. Die Steigung h kennen wir ja jetzt bereits. Wk=hf-Ekin= zum Beispiel 4,1×10 hoch -15eVs × 4,49×10 hoch 14 Hz- 0,81 eV=1,03 eV. Jetzt haben wir alles berechnet, was wir berechnen wollen.  Damit bedanke ich mich und bis zum nächsten Mal. Ciao.                                         

Informationen zum Video
3 Kommentare
  1. Default

    Ist E bei der Brechnung also gleich U oder wie muss ich das verstehen? h=E/f.... ist E nicht U*e?

    Von Kallinski, vor mehr als 5 Jahren
  2. Default

    endlich mal ein video, dass zu meinem Unterricht passt

    Von Deleted User 17673, vor fast 6 Jahren
  3. Default

    Toll gemacht!Bitte viel mehr Physik videos.:)

    Von Druwwl, vor etwa 6 Jahren