Millikan-Versuch 08:19 min

Textversion des Videos

Transkript Millikan-Versuch

Hast du schon mal was von Bodyflying gehört? Dabei schwebt man quasi in der Luft, weil man von einem starken Luftstrom aufwärts gedrückt wird. Auf jeden Fall ein Riesen-Spaß!

So ähnlich kannst du dir auch unsere heutigen Hauptdarsteller vorstellen: Kleine Öltröpfchen, die in einem elektrischen Feld schweben. Könnten die etwas fühlen, dann hätten sie wahrscheinlich genauso viel Spaß. Unser Thema heute ist der Millikan-Versuch, bei dem wir uns solche schwebenden Öltröpfchen anschauen wollen.

Videoübersicht

Der Versuch ist nach Robert Millikan benannt, über den wir zuerst sprechen werden. Dann zeige ich dir Aufbau und Durchführung des Versuchs, wobei wir uns auf die Schwebemethode konzentrieren werden. Die mathematische Auswertung führt uns dann zur Elementarladung; dem eigentlichen Ziel dieses Experimentes.

Robert Andrews Millikan

Sprechen wir zuerst über den US-amerikanischen Physiker Robert Andrews Millikan. Er forschte an elektrischen Feldern und versuchte, die Elementarladung zu bestimmen. Ihm war bereits bekannt, dass Körper eine elektrische Ladung Q tragen können. Die Einheit der Ladung kannte man auch schon und wurde in Amperesekunden oder Coulomb angegeben.

Elementarladung e

Ebenso kannte man die Coulombsche Anziehungskraft zwischen geladenen Teilchen und man wusste, wie diese elektrische Kraft in einem Plattenkondensator bestimmt wurde. Bereits 1750 vermutete Benjamin Franklin, dass es eine kleinste Elementarladung e geben müsste. 1897 konnte dann John Townsend sogar eine Größenordnung für e von ungefähr 10 hoch minus 19 Coulomb angeben.

Doch erst 1910 gelang Millikan der Durchbruch. Er verbesserte den Versuchsaufbau eines Kollegen und konnte so die Elementarladung recht präzise bestimmen. Unter anderem dafür erhielt er 1923 auch den Nobelpreis für Physik.

Der Versuchsaufbau

Schauen wir uns diesen Versuchsaufbau nun genauer an? Man braucht einen horizontalen Plattenkondensator an einer regelbaren Spannungsquelle. Im Kondensator bildet sich ein homogenes, senkrechtes elektrisches Feld. Dieser Raum zwischen den Platten soll beobachtet werden, weshalb noch eine Lampe und ein Mikroskop mit Skalenstrichen benötigt wird.

Jetzt ist die Bühne frei für unsere Hauptdarsteller: Mit einem Zerstäuber werden nun feine Öltröpfchen in den Kondensator gesprüht und beobachtet. Aber warum schweben die da überhaupt? Sollten bei der Durchführung die Tröpfchen nicht wegen der Gewichtskraft nach unten fallen? Richtig. Aber beim Versprühen laden sie sich durch die Reibung auch elektrostatisch auf. Somit trägt ein Öltröpfchen eine Ladung Q und im elektrischen Feld wirkt eine elektrische Kraft darauf.

Der Schwebezustand

Für den Schwebezustand muss man die Spannung des Kondensators so einstellen, dass die elektrische Kraft entgegen der Gewichtskraft wirkt. Für ein positiv geladenes Öltröpfchen muss also die obere Platte negativ geladen sein.Genau genommen müssen wir noch eine dritte Kraft berücksichtigen. Da sich das Öltröpfchen in Luft befindet, wirkt noch nach oben gerichtete Auftriebskraft.

Die reduzierte Gewichtskraft

Es gilt also das Kräftegleichgewicht aus Gewichtskraft gleich elektrische Kraft plus Auftriebskraft. Oftmals wird die Auftriebskraft gleich mit der Gewichtskraft verrechnet und man spricht von der reduzierten Gewichtskraft F G Strich. Daraus kann nun die Ladung des Tröpfchens bestimmt werden. Eine ausführliche Herleitung findest du in einem anderen Video, deshalb zeige ich dir hier nur das Endergebnis. Die Ladung Q ergibt sich nach dieser Gleichung.

Dabei ist g die Fallbeschleunigung, Rho Strich die reduzierte Dichte aus Öl und Luft, d der Abstand der Kondensatorplatten, U die Spannung zwischen den Platten und r der Radius des Öltröpfchens. g und Rho Strich können wir nachschlagen und d und U sind Messgrößen. Aber wie bestimmen wir den Radius des Tröpfchens? Dazu kommen wir zum Teil zwei des Versuches.

Wir schalten die Kondensatorspannung ab und lassen das Öltröpfchen fallen. Dabei wird es durch die Luftreibung gebremst und sinkt mit konstanter Geschwindigkeit. In diesem Sinkzustand gleichen sich die reduzierte Gewichtskraft und die Reibungskraft aus.

Die STOKESsche Reibungskraft

Für F R wird hier die STOKESsche Reibungskraft verwendet und somit können wir auf den Radius r schließen. In dieser Gleichung ist Eta die Viskosität oder Zähigkeit der Luft. Die Geschwindigkeit v des sinkenden Tröpfchens können wir aus der Beobachtung bestimmen. Diese Gleichung wird nun in die erste Gleichung eingesetzt, woraus dann diese wunderbare Formel für Q entsteht.

Diese Gleichung wird nun in die erste Gleichung eingesetzt, woraus dann diese wunderbare Formel für Q entsteht. Diese enthält nur noch Messgrößen oder Kenngrößen und wir können endlich das Experiment durchführen und die Ladung verschiedener Tröpfchen bestimmen. In der Auswertung tragen wir dann für jedes Tröpfchen seine Ladung Q auf in einem Diagramm auf.

Dabei fällt auf, dass die Abstände zwischen den Ladungswerten immer in etwa gleich sind. Das lässt vermuten, dass es einen kleinsten gemeinsamen Teiler gibt. Also eine kleinste Ladung, aus der sich alle anderen Ladungen zusammensetzen. Diese kleinste Ladung ist die Elementarladung e gleich rund 1,602 mal Zehn hoch minus 19 Coulomb.

Das ist die kleinste Ladung, die in der Natur frei vorkommt und alle Ladungen sind ganzzahlige Vielfache davon. Ein Elektron zum Beispiel trägt genau eine negative Elementarladung.

Zusammenfassung zum Millikanversuch

Fassen wir das Wichtigste zusammen: Im Millikan-Versuch bewegen sich kleinste, elektrostatisch geladene Öltröpfen in einem vertikalen Kondensatorfeld. Im Schwebezustand herrscht dabei ein Kräftegleichgewicht aus reduzierter Gewichtskraft und elektrischer Kraft. Im Sinkzustand gilt das Gleichgewicht aus reduzierter Gewichtskraft und Reibungskraft.

Daraus kann letztlich die Ladung des Tröpfchens bestimmt werden, wobei man für Q immer ein ganzzahliges Vielfaches der Elementarladung e misst. Robert Millikan gelang es als Erster diese Elementarladung direkt zu bestimmen. Doch es geht noch kleiner!

Vielleicht hast du schon von Quarks gehört. Das sind die Teilchen aus denen Protonen und Neutronen zusammengesetzt sind. Ihre Ladung beträgt sogar nur ein oder zwei Drittel von e. Da sie aber nicht als freie Teilchen in der Natur vorkommmen, bleibt e die Elementarladung.

Informationen zum Video
2 Kommentare
  1. Default

    Ein super Video! Vielen Dank! Habe alles sehr gut verstanden, ist dann ja relativ einfach.

    Von Sofatutor 10, vor 12 Monaten
  2. Default

    Endlich habe ich es verstanden. Wirklich prima erklärt. Wenn man es versteht, ist es relativ simpel. Vielen Dank für die super Erklärung.

    Von Vladislav Omelyanenko, vor mehr als einem Jahr