Advent, Advent, 1 Monat weihnachtliche Laufzeit geschenkt.

Nicht bis zur Bescherung warten, Aktion nur gültig bis zum 18.12.2016!

Textversion des Videos

Transkript Lorentzkraft – Bewegte Ladung und Ströme im magnetischen Feld

Hallo und herzlich willkommen zu Physik mit Kalle! Wir wollen uns heute aus dem Gebiet Elektrizität und Magnetismus Ströme und bewegte Ladungen im magnetischen Feld, oder, kürzer gesagt, die Lorenzkraft genauer ansehen. Für dieses Video solltet ihr bereits die Filme über das Magnetfeld des geraden stromdurchflossenen Drahtes und den stromdurchflossenen Leiter im Magnetfeld gesehen haben. Wir lernen heute, was die Lorenzkraft ist, ob bewegte Ladung das Gleiche ist wie elektrischer Strom und zum Schluss, was die Ursache der Lorenzkraft ist. Also los: Lorenzkraft nennt man die Kraft, die ein magnetisches Feld auf eine bewegte elektrische Ladung ausübt. Die Richtung dieser Kraft ist immer senkrecht zur Bewegungsrichtung unserer Ladung und senkrecht zur Richtung unseres Magnetfeldes. Dazu muss aber auch eine Bewegung senkrecht zur Magnetfeldrichtung vorliegen. Das heißt, ist die Bewegungsrichtung genau parallel zur Magnetfeldrichtung, wirkt keine Lorenzkraft. Die Richtung der Lorenzkraft ließ sich voraussagen mithilfe der Linke-Hand-Regel. Wir wiederholen noch einmal kurz: Die Linke-Hand-Regel gilt sowohl für Stromfluss als auch für Ladungen. Ich muss nur den Daumen, den Zeigefinger und den Mittelfinger in einem rechten Winkel zueinander halten und dann mit dem Daumen in Richtung der physikalischen Stromrichtung, also von Minus nach Plus, oder, für eine negative Ladung, in die Bewegungsrichtung halten. Dann richte ich meinen Zeigefinger in Richtung der magnetischen Feldlinien aus, das heißt von Nord nach Süd und der übrig gebliebene, der Mittelfinger, zeigt dann in die Richtung der Lorenzkraft. Natürlich gibt es auch eine Rechte-Hand-Regel. Bei der Rechte-Hand-Regel zeigt der Daumen in Richtung der technischen Stromrichtung. Das heißt von Plus nach Minus oder in die Bewegungsrichtung einer positiven Ladung. Der Zeigefinger zeigt, genau wie bei der Linke-Hand-Regel, in die Richtung der Magnetfeldlinien und der Mittelfinger zeigt wieder die Richtung der Lorenzkraft an. Ich habe ja im Video über den stromdurchflossenen Leiter im Magnetfeld bereits gesagt, dass die Auslenkung des Leiters durch die Lorenzkraft zustande kommt.Und auch die Tatsache, dass wir hier die gleiche Eselsbrücke sowohl für Stromfluss als auch für bewegte Ladung benutzen, legt es noch einmal nahe:  Ist denn nun bewegte Ladung gleich Stromfluss? Dazu wollen wir uns das Ganze noch mal aus der Nähe ansehen. Links seht ihr das Feld, wie es zum Beispiel durch einen Hufeisenmagneten erzeugt werden könnte, zwischen dem Nord- und dem Südpol eines Magneten. In dieses Feld bringe ich nun einen stromdurchflossenen Leiter. Ihr seht, der Strom fließt von rechts nach links, von Minus nach Plus. Wir wissen bereits, die Kraft auf diesen Leiter ist B× Stromstärke (I) × Länge des Leiters (l). Außerdem wollen wir uns ein einzelnes, negativ geladenes Teilchen ansehen, das sich mit der Geschwindigkeit (v) nach links bewegt. Dieses Teilchen erfährt die Lorenzkraft q×v×B. Wie ihr schnell mit der Linke-Hand-Regel überprüfen könnt, ist sowohl die Kraft auf den Leiter als auch die Kraft auf das Teilchen in den Bildschirm hineingerichtet. Es scheint sich also um den gleichen Sachverhalt zu handeln. Und warum das so ist, sehen wir, wenn wir uns den Draht ein wenig genauer anschauen. Im Draht scheinen nämlich kleine Teilchen von rechts nach links zu fließen und wenn wir das Ganze noch einmal stark vergrößern erkennen wir, dass dort Elektronen mit einer sogenannten Driftgeschwindigkeit (v) von rechts nach links, also vom Minuspol zum Pluspol, fließen. Strom fließt nämlich dadurch, dass unter Einfluss einer Spannung Ladungsträger eine Ladung von a nach b transportieren. Und deshalb ist die Kraft, die unseren stromdurchflossenen Leiter im Magnetfeld auslenkt, die Summe der Lorenzkräfte auf die einzelnen bewegten Ladungsträger. Das können wir auch sehr schnell mit den Formeln der beiden Kräfte zeigen, wir brauch nur ein paar einfache Umformungen. Ein Teilchen mit der Geschwindigkeit (v) braucht die Zeit (t), um die Strecke der Länge (l) zurückzulegen. Außerdem wissen wir, Coulomb, die Einheit der Ladung,  ist Ampere×Sekunden. Also ist Strom die transportierte Ladung pro Zeit (t). Wenn ich das nun auf meine Formel für die Kraft auf den stromdurchflossenen Leiter F= B×I (großes i)×l(kleines L) einsetze, erhalte ich F=B×Q/t×v×t. Q ist ja die  bewegte Ladung im Draht, also die Ladung eines Elektrons mal die Anzahl der Elektronen. Ich schreibe also: Q=n×e. Dann erhalte ich F=B×n×e×v. Und da B×e exakt die Lorenzkraft auf ein Elektron ist, erkennt ihr: Die Formel F=B×I (großes i)×l (kleines L) steht exakt für die Summe der Lorenzkräfte auf alle im Draht sich bewegenden Elektronen. Als Letztes wollen wir uns jetzt noch kurz über die Ursache der Lorenzkraft ansehen. Das wird nämlich oft in der Schule nicht gemacht, dabei ist es eigentlich gar nicht so schwierig. Wir nehmen dazu wieder das Magnetfeld zwischen einem Nord- und einem Südpol und beobachten diesmal ein Elektron, das ich ein bisschen vergrößert eingezeichnet habe, das direkt auf uns zufliegt. Wir benutzen die Linke-Hand-Regel und stellen fest: Die Lorenzkraft müsste dieses Elektron nach links ablenken. Warum unser Elektron aber abgelenkt wird, hat mit dem Magnetfeld zu tun, das es durch seine Bewegung selbst erzeugt. Ihr erinnert euch vielleicht, im Film über das Magnetfeld des stromdurchflossenen Drahtes hatten wir gehört, dass die Feldlinien des dabei entstehenden Magnetfeldes konzentrische Kreise um den Draht sind. Um die Richtung unserer Magnetfeldlinien herauszufinden, benutzen wir die Linke-Hand-Regel für die Magnetfeldbildung. Wir zeigen mit dem Daumen in Elektron- oder Stromflugrichtung und umschließen den Leiter oder die Flugrichtung mit den anderen Fingern, die uns dann die Richtung der Feldlinien anzeigen. Das entstehende Magnetfeld sieht also so aus. Die Magnetfeldlinien des äußeren magnetischen Feldes zeigen von Nord nach Süd, also von oben nach unten. Das bedeutet, auf der linken Seite unseres Elektrons zeigen die Magnetfeldlinien des äußeren und des erzeugten magnetischen Feldes in entgegengesetzte Richtungen. Das ist in etwa so, als würde ich zwei Stabmagneten so nebeneinander halten, dass jeweils ein Nord- und Südpol nebeneinander sind. Da sich die beiden Nord- und Südpolpaare jeweils anziehen, entsteht also auf dieser Seite eine anziehende Kraft. Auf der rechten Seite unseres Elektrons zeigen die Feldlinien des äußeren magnetischen Feldes und des erzeugten Magnetfeldes in die gleiche Richtung. Und das ist ungefähr so, als würde ich zwei Stabmagneten so halten, dass sich Nord- und Nord- und Süd- und Südpol gegenüber liegen. Die gleichnamigen Pole würden sich jeweils abstoßen, also entsteht auf dieser Seite des Elektrons eine abstoßende Kraft. Ihr seht also, die Lorenzkraft ist eine Folge der Wechselwirkung zweier magnetischer Felder. Und das Ergebnis, das unsere genaue Analyse ergeben hat, nämlich das Elektron wird nach links abgelenkt, stimmt überein mit dem, was unsere Linke-Hand-Regel vorausgesagt hatte. Die scheint also zu stimmen. Wir wollen noch einmal wiederholen, was wir heute gelernt haben: Die Lorenzkraft wirkt im Magnetfeld auf bewegte Ladungen, beziehungsweise Ströme. Die Lorenzkraft ist senkrecht zur Bewegungsrichtung (v) der Ladung.Und senkrecht zur Magnetfeldrichtung. Sie wirkt allerdings nur, wenn die Geschwindigkeit, beziehungsweise Stromrichtung, nicht parallel zur Magnetfeldrichtung ist. Ist dies der Fall, wirkt keine Lorenzkraft. Die Formel für den stromdurchflossenen Leiter im Magnetfeld (F=B×I×l) steht für die Summe der auf die Elektronen im Leiter ausgeübte Lorenzkraft. F=B×Q/t×v. Die Ursache der Lorenzkraft ist die Wechselwirkung zwischen einem äußeren Magnetfeld und einem von einem Strom oder einer bewegten Ladung erzeugtem Stromfeld. So, das war es schon wieder für heute. Ich hoffe, ich konnte euch helfen. Vielen Dank fürs Zuschauen, vielleicht bis zum nächsten Mal! Euer Kalle!  

Informationen zum Video
7 Kommentare
  1. Default

    oke.. Video erst ganz anschaun hätte geholfen :D sorry

    Von Lorenz S., vor etwa 2 Jahren
  2. Default

    Das verwirrt mich.. In der Schule haben wir das mit der rechten Hand gemacht, nicht mit der linken... Was ist jetzt richtig?? D:

    Von Lorenz S., vor etwa 2 Jahren
  3. Default

    Kalle du bist super!

    Von Musguru, vor mehr als 2 Jahren
  4. Nikolai

    @Tefik: F=B*q*v ist die Lorentzkraft die auf EIN Teilchen der Ladung q und mit der Geschwindigkeit v in einem Magnetfeld der stärke B wirkt (v und B stehen senkrecht aufeinander). F = B*I*l=B*(Q/t)*l ist die Kraft die auf einen Leiter der Länge l mit Gesamtladung Q wirkt. Die Gesamtladung Q setzt sich aus allen n Elektronen zusammen, deshalb gilt Q=n*e. Aber da jetzt e gleich die Ladung unserer Teilchen (Elektronen) ist könnnen wir schreiben q=e also Q=n*e=n*q.

    Von Nikolai P., vor mehr als 3 Jahren
  5. Img 0098

    Ich glaube bei 8:11 ist ein Formelfehler. Sollte es nicht am Ende heißen: F = B x q x v ?

    n x e = q ?

    Von Tefik I., vor mehr als 3 Jahren
  1. Default

    Vielen Dank für dieses Video! Wie alle anderen vom "Kalle" ;) fand ich auch dieses super.
    Nur als kleine Anmerkung: Im Text zum Video steht "Die Ursache der Lorenzkraft ist die Wechselwirkung zwischen einem äußeren Magnetfeld und einem von einem Strom oder einer bewegten Ladung erzeugtem Stromfeld.", dabei wird im Video richtigerweise von Magnetfeld statt Stromfeld gesprochen.

    Von Airotkiv, vor fast 4 Jahren
  2. Default

    Endlich habe Ich die Lorentzkraft verstanden!!! Vielen Dank :D

    Von Mansoor, vor mehr als 4 Jahren
Mehr Kommentare