Advent, Advent, 1 Monat weihnachtliche Laufzeit geschenkt.

Nicht bis zur Bescherung warten, Aktion nur gültig bis zum 18.12.2016!

Textversion des Videos

Transkript Inertialsysteme und beschleunigte Bezugssysteme – Galilei-Transformation

Hallo und herzlich willkommen zu Physik mit Kalle, wir wollen uns heute auf dem Gebiet der Mechanik, mit Galilei-Transformation, Inertialsysteme und geradlinig gesteuerte Bezugssysteme beschäftigen.Für dieses Video solltet ihr bereits den Film über das erste Newtonsche Axiom gesehen haben. Wir lernen heute: Was die Galilei-Transformation ist, was der Unterschied zwischen Inertialsystemen und beschleunigten Bezugssystemen ist, was Scheinkräfte sind und zum Schluss sehen wir uns ein Beispiel an, nämlich, den Tischtuchtrick.   Mit der Galileitransformation kann ich Koordinaten von einem Inertialsystem, das ich mit IS abkürze, in ein anderes transformieren. Als Inertialsystem bezeichnet man übrigens ein Bezugssystem, in dem das Trägheitsprinzip gilt. Als Beispiel vergleichen wir mal die beiden Bezugssysteme eines fahrenden Zuges und eines ruhenden Beobachters. Rechts seht ihr ein Bild der ganzen Angelegenheit, wir nehmen mal an, der ruhende Beobachter, also ich, sitze im Ursprung und der Zug bewegt sich. Mit der Zeit T seht ihr bewegt sich der Zug um eine Strecke X voran. Will ich nun die Koordinate Xdes Zuges aus seiner Zeit berechnen, so kann ich das aus meiner Koordinate relativ leicht tun. Für mich hat sich der Zug bewegt, ich weiß aber, dass er das aus seiner Sicht nicht getan hat. Die Strecke v×t, um die er sich bewegt hat, muss sich also von meiner Koordinate x abziehen, um seine Koordinate xzu erhalten. Da ich nur eine Bewegung in eine Dimension betrachte, sind y=y, z=z und die Zeit t ist natürlich auch in beiden Systemen gleich. Ich kann natürlich genauso leicht die Koordinaten aus Sicht des Zuges in meine Koordinaten umrechnen. Der Zug weiß, aha, ich bin vom Beobachter weggefahren, aber für ihn wird es so aussehen, als ob ich mich von ihm entfernt habe. Er sagt also, die Koordinate x die der Beobachter sieht, ist meine Koordinate x+ die Relativgeschwindigkeit zwischen uns beiden v×die Zeit t. Da ich wieder eine Bewegung in einer Dimension habe, ist y=y, z=zund die Zeit läuft in beiden Systemen gleich schnell. Und das sind auch schon die Formeln für eine Galilei-Transformation zwischen 2 Systemen, die sich mit einer Geschwindigkeit v voneinander entfernen.Vielleicht die wichtigste Merkregel der Galilei-Transformation ist, die Naturgesetze funktionieren in allen Inertialsystemen gleich! Welche Bezugssysteme sind nun aber keine Inertialsysteme? Und inwiefern funktionieren dort die Naturgesetze anders. Das sehen wir uns im nächsten Kapitel an. Ein zu einem Inertialsystem gleichförmig bewegtes Bezugssystem ist ebenfalls ein Inertialsystem. Ein relativ zu einem Inertialsystem beschleunigtes Bezugssystem dagegen ist kein Inertialsystem. In diesem beschleunigten Bezugssystem treten zusätzlich Scheinkräfte auf. Ihr habt das selbst schon oft erlebt, z. B. wenn ihr in einem anfahrenden Auto sitzt und es euch in den Sitz drückt. Diese Scheinkräfte entstehen durch die Trägheit der Masse, ihr erinnert euch, die Masse ist träge, d. h. sie wehrt sich, je nachdem wie schwer sie ist, dagegen ihren Bewegungszustand zu ändern. Deshalb nennt man diese Scheinkräfte auch Trägheitskräfte. Man erkennt diese Scheinkräfte daran, dass sie, entgegen dem 3. Newtonschen Axiom, keine Gegenkraft haben. Schauen wir uns mal ein paar Beispiele für Scheinkräfte an. Die wahrscheinlich bekannteste ist die Zentrifugalkraft. Seit ihr schon mal in einem Kettenkarussell gesessen? Man hat ständig das Gefühl, dass es einen nach außen schleudern müsste, dass man quasi aus dem Zentrum flieht, d. h. zentrifugal. Dieses Gefühl wird durch die Trägheit eurer Masse erzeugt. Diese möchte nämlich am liebsten einfach gleichförmig in ihre Richtung weiterfliegen.Das kann sie aber nicht, da sie durch euren Sitz und der von ihm ausgeübten Zentripetalkraft auf der Kreisbahn gehalten wird. Ein weiteres Beispiel ist die Corioliskraft, die auf Körper in einem rotierten Bezugssystem wirkt. Ein schönes Beispiel für die Corioliskraft könnt ihr in diesem Bild sehen, denn immerhin ist unsere Erde ein rotierendes Bezugssystem. Und die Corioliskraft hat einen großen Einfluss auf die Bewegung von Luft- und Wassermassen. Wir merken uns: Scheinkräfte entstehen dadurch, dass man ein Bezugssystem relativ zu einem anderen beschleunigt. Und in solch einem (relativ zu einem Initialsystem) beschleunigten Bezugssystem gelten die Newtonschen Axiome nicht! Ein Beispiel für solch ein beschleunigtes Bezugssystem wollen wir uns jetzt im letzten Kapitel ansehen. Wir schauen uns den sogenannten Tischtuchtrick an! Ihr habt das sicher schon mal gesehen. Man nimmt einen Tisch, ein Tischtuch und deckt den Tisch so voll wie möglich. Dann packt man sich das Tischtuch und reißt mit einer einzigen Bewegung das Tischtuch vom Tisch. Und, oh Wunder, alles was auf dem Tisch stand, steht immer noch dort. Da ich weder einen Tisch noch ein Tischtuch, geschweige denn das nötige Level an Geschick habe, ziehe ich einfach ein Blatt Papier unter einem Glas Wasser hervor. Dieser Vorgang wird nun von mir und einer auf dem Blatt lebenden Papierblattlaus beobachtet. Vor dem Versuch sehen ich und die Papierblattlaus das Gleiche, ein Papier und ein Glas Wasser. Jetzt ziehen wir und das Glas steht immer noch da, wo es war. Ich beobachte Folgendes: Ich habe das Blatt Papier unter dem Glas hervorgezogen, und wegen der hohen Trägheit der Masse, hat sich das Wasserglas nicht besonders davon beeindrucken lassen, und ist einfach stehen geblieben. Für die Papierblattlaus ist das Ganze ein wenig undurchsichtiger, ihr Papier, hat sich ihrer Meinung nach nicht bewegt, das große Glasding allerdings, ist von einer unsichtbaren Hand einfach von ihr weg beschleunigt worden. Die Papierblattlaus sieht also eine durch die Trägheit des Glases entstandene Scheinkraft. Wir wollen noch einmal wiederholen was wir heute gelernt haben: Die Galileitransformation überträgt Koordinaten von einem Inertialsystem in ein anderes. V ist dabei die Relativgeschwindigkeit zwischen beiden Inertialsystemen. Die Formeln der Transformation für eine eindimensionale Bewegung sind: x=x-vt, y=y, z=z und t=t in die andere Richtung lauten sie: x=x+vt,y=y,z=zund t=t`  Inertialsysteme nennen wir Bezugssysteme, in denen das Trägheitsprinzip gilt. In relativ zu Inertialsystemen beschleunigten Bezugssystemen entsehen Schein- bzw. Trägheitskräfte. In diesen Bezugssystemen gelten die Newtonschen Axiome nicht! Das war es schon wieder für heute, ich hoffe ich konnte euch helfen! Vielen Dank für´s Zuschauen, vielleicht bis zum nächsten Mal: Euer Kalle

Informationen zum Video