Advent, Advent, 1 Monat weihnachtliche Laufzeit geschenkt.

Nicht bis zur Bescherung warten, Aktion nur gültig bis zum 18.12.2016!

Textversion des Videos

Transkript Harmonische mechanische Schwingung

Hallo und herzlich willkommen zu Physik mit Kalle! Wir wollen uns heute, aus dem Gebiet "Schwingungen und Wellen", mit der harmonischen mechanischen Schwingung beschäftigen. Für dieses Video solltet ihr bereits den Film über mechanische Schwingungen gesehen haben. Wir lernen heute, was eine harmonische mechanische Schwingung ist, wie ihr Auslenkung-Zeit-Verlauf aussieht und wie die Lösung für die Schwingungsgleichung einer harmonischen mechanischen Schwingung lautet. Eine harmonische mechanische Schwingung erhält man in einem System, indem die einzige wirkende Kraft die rücktreibende Kraft FH mit der Formel -k×y ist. Es gibt noch andere, einfache Definitionen, aber für die müssen wir uns ein wenig gedulden. Fürs Erste stellen wir fest: Das Federpendel, das ihr noch mal rechts im Bild seht, ist, wenn wir Luftreibung und andere dämpfende Effekte vernachlässigen, ein harmonischer Oszillator, das bedeutet so viel wie es schwingt harmonisch. Nun wollen wir uns mal den Verlauf der Auslenkung y(t) im Verhältnis zur verstrichenen Zeit t ansehen. Dazu sehen wir uns links mal ganz genau die Bewegung der Kugel an und schreiben ihre jeweilige Auslenkung zum Zeitpunkt t mit, um ein Diagramm dafür zu erhalten. Das sieht ungefähr so aus. Dabei fällt uns auf: Der Auslenkung-Zeit-Verlauf einer harmonischen mechanischen Schwingung sieht ziemlich sinusförmig aus. Wir merken uns, denn das brauchen wir gleich für die Rechnung: Der Maximalwert unserer Auslenkung muss die Amplitude A sein und die Dauer eines einzelnen Schwingungsvorgangs ist die Periodendauer T. Mit diesen Informationen bewaffnet wollen wir jetzt mal versuchen, die Schwingungsgleichung zu lösen. Wir schreiben uns mal das 2. Newtonsche Axiom auf, die Kraft ist die Masse × die 2. Ableitung der Auslenkung, also die Beschleunigung. Und die Formel für die rücktreibende Kraft ist nach dem Hookeschen Gesetz: FH=-k×y. Da wir ja keine dämpfenden Terme haben bei einer harmonischen Schwingung, kann ich also einfach schreiben: m×ÿ+k×y=0. Wenn ich das nach ÿ umstelle, erhalte ich: ÿ=-(k/m)×y. Da wir gerade festgestellt haben, dass unser Auslenkung-Zeit-Verlauf sinusförmig aussieht, werde ich versuchen, diese Differenzialgleichung mit einer Sinusfunktion zu lösen. Aber keine Panik, wir prüfen das gleich alles noch nach. Ich weiß, der Maximalwert der Auslenkung ist die Amplitude A, da mein Sinus nur zwischen -1 und 1 hin und her geht, muss ich also erst mal schreiben: y(t)=A×sin, und in meinen Sinus packe ich nicht einfach nur t, sondern ωt+φ. Und das ist auch schon die Lösung für die Schwingungsgleichung des harmonischen Oszillators. Wir nennen A die Amplitude, ω unsere Kreisfrequenz und φ die Phasenverschiebung. Die Aufgabe der Kreisfrequenz ω ist es, den Sinus auf die richtige Periodendauer zu strecken oder zu stauchen. Der Sinus von t hätte die Periode 2π, das heißt, ein Schwingungsvorgang dauert 2π Sekunden. Der Sinus von 2π×t ist um 2π gestaucht, das heißt, seine Periodendauer beträgt nur noch 1 Sekunde. Wenn ich also nun für ω 2π / die Periodendauer t einsetze, dann hat mein Sinus genau die richtige Periodendauer. Mithilfe der Phasenverschiebung φ kann ich meine Sinusfunktion an den richtigen Anfangspunkt verschieben, denn es fängt ja nicht jede Schwingung beim Nullpunkt an. Nun wollen wir aber erst mal überprüfen, ob unsere Lösung auch wirklich die Lösung ist. Dazu müssen wir y(t) einfach zweimal ableiten. Die 1. Ableitung yPunkt=A×cos(ωt+φ)×, nachdifferenzieren, was in der Klammer steht, ω. Die 2. Ableitung ÿ ist dann: A×(-sin, denn die Ableitung des Kosinus ist -sin, (ωt+φ))×ω×, noch mal nachdifferenziert, ω, also ω2. Und wir sehen: A×sin(ωt+φ) ist ja genau y(t). Damit ist also -ω2=-(k/m) oder anders ausgedrückt: ω2=k/m. Damit ist also ω, die Kreisfrequenz, nicht nur 2π / die Periodendauer, sondern außerdem die Wurzel aus Federkonstante / Masse. Wir wollen noch mal wiederholen, was wir heute gelernt haben. Ist die einzige wirkende Kraft bei einer mechanischen Schwingung die rücktreibende Kraft der Form FH=-k×y, so spricht man von einem harmonischen Oszillator. Der Auslenkung-Zeit-Verlauf solch einer Schwingung ist immer sinusförmig. Die Lösung der Schwingungsgleichung für den harmonischen Oszillator lautet: Die Auslenkung y zur Zeit t =A×sin(ωt+φ). Dabei ist A die Amplitude, ω die Kreisfrequenz und φ die Phasenverschiebung. So, das war's schon wieder für heute. Ich hoffe, ich konnte euch helfen. Vielen Dank fürs Zuschauen, vielleicht bis zum nächsten Mal, euer Kalle!

Informationen zum Video
6 Kommentare
  1. Default

    leider viel zu kompliziert erklärt

    Von Al Chouli 1, vor 11 Monaten
  2. Default

    Leider erklärt/sagt mir die Formel gar nichts, wieso und wann es eine harmonische Schwingung ist.

    Von Rosenrot78, vor mehr als einem Jahr
  3. Karsten

    @all

    Hier sind die Links zu weiteren Videos die die Mathematischen Hintergründe beschreiben.
    http://www.sofatutor.com/mathematik/videos/winkelfunktionen-spezielle-funktionswerte
    http://www.sofatutor.com/mathematik/videos/sinusfunktion-allgemein-mit-parametern
    http://www.sofatutor.com/mathematik/videos/periodische-funktionen-definition-und-beispiel-1
    http://www.sofatutor.com/mathematik/videos/periodische-funktionen-definition-und-beispiel-2
    http://www.sofatutor.com/mathematik/videos/partielle-integration-mit-sinus-und-cosinustermen

    Von Karsten Schedemann, vor fast 2 Jahren
  4. Default

    Mathematisch sagt mir das so gar nichts.
    Bitte Verlinkung zu den Videos, die dafür nötig sind, etc., um dies Video dann zu verstehen...

    Von Rosenrot78, vor fast 2 Jahren
  5. Default

    k ist hier die Federkonstante der rücktreibenden Kraft, also eine Konstante die angibt, wieviel Kraft (abhängig von der Auslenkung) auf den Körper wirkt, um ihn zum Gleichgewichtspunkt zurückzutreiben.

    Von Jakob Köbner, vor mehr als 4 Jahren
  1. Default

    Was ist k ?

    Von Isabel3004, vor mehr als 4 Jahren
Mehr Kommentare