Textversion des Videos

Transkript Entdeckung der Strahlung von Uran

Martin Heinrich Klaproth entdeckte 1789 ein neues Element. Er benannte es nach einem Planeten, den man wenige Jahre zuvor entdeckte. So wurde der Planet Uranus zum Namensgeber für das Element Uran. Ob Klaproth wohl damals wohl ahnte, wie gefährlich und genial zugleich sein neues Element sein würde?

Das physikalische Element Uran

Die Gefahren und Möglichkeiten dieses Elementes zeigt dir dieses Video zur Entdeckung der Strahlung von Uran. Dafür wiederholen wir zu Beginn die Symbolschreibweise. Anschließend erfährst du Grundlegendes zum Element Uran und seinem natürlichen und künstlichen Vorkommen. Und zum Schluss klären wir, weshalb die Entdeckung von Uran Segen und Fluch zugleich war.

Die Sprache der Kernphysik

Lass uns zu Beginn kurz die Sprache der Kernphysik wiederholen. Der große Buchstabe in der Mitte kennzeichnet abkürzend das Element. Links unten findet man die Protonenzahl oder Kernladungszahl - symbolisiert durch ein großes Z. Nach der Kernladungszahl sind die Elemente im Periodensystem geordnet.

Links oben findest du die Nukleonenzahl oder auch Massenzahl genannt. Nukleonen sind alle Teilchen des Atomkerns, also sowohl Protonen als auch Neutronen. Deshalb ergibt sich groß A aus der Summe der Protonen und Neutronen. Häufig findet man auch die abgekürzte Schreibweise ohne Kernladungszahl.

Die radioaktiven Isotope des Elements

Zwei Atomkerne mit gleicher Protonenzahl und unterschiedlich viele Neutronen nennt man Isotope eines Elements. Um ein besonderes Element und dessen Isotope geht es in diesem Video: Uran, abgekürzt groß U. Uran ist radioaktiv und emittiert Alpha- oder Gammastrahlung. Es besitzt 92 Protonen und die Besonderheit, dass all seine Isotope radioaktiv sind.

Henri Becquerel fand schon 1896 heraus, dass natürliches Uran zu strahlen scheint. Natürlich vorkommendes Uran findest du beispielsweise in Gesteinen wie Granit oder Marmor. Es besteht zu 99,3 Prozent aus dem Isotop U-238 und zu 0,7 Prozent aus dem Isotop U-235. Das Natururan wandelt sich durch Alphastrahlung zu nicht radioaktivem Blei um.

Uran als Kernbrennstoff

Für seine Verwendung als Kernbrennstoff wird Uran angereichert. Das bedeutet, der Anteil des Isotops U-235 wird auf über 90% erhöht. Mit angereichertem Uran kann man enorme Energien freizusetzten-wie bei es bei der Kernspaltung in Atmokraftwerken passiert.

Freisetzen der Energie in Urankernen

Uran 235 ist einer der wenigen Atomkerne, der sich zur Kernspaltung eignet. Schon 1938 fand der Chemiker Otto Hahn heraus, dass sich Urankerne zertrümmern lassen. Um die im Urankern gespeicherte Energie freizusetzten, muss ein Neutron auf den Urankern treffen. Für nur 10 hoch -14 Sekunden entsteht Uran 236.

Dieser Zwischenkern zerfällt dann direkt in drei Neutronen, Krypton und Barium. Würde man den Urankern und das Neutron vom Beginn der Reaktion und die fünf Komponenten am Ende der Reaktion wiegen, stellt man fest, dass der Urankern und das Neutron eine größere Masse besitzen.

Albert Einsteins Gleichung

Das erklärt Albert Einstein und seine Gleichung groß E gleich mc². Sie besagt: der Massenunterschied wird in Form von Energie frei. Durch thermische Energie und kinetische Energie der Spaltprodukte-also Krypton, Barium und der drei Neutronen. Diese freiwerdende Energie nutzt ein Kernkraftwerk.

Ein Kilogramm gespaltenes Uran 235 setzt dabei eine Energie von 20 mal 10 hoch 6 Kilowattstunden frei. Diese in Masse gespeicherte Energie wird leider nicht ausschließlich zum Wohle der Menschen eingesetzt. Die kriegerische Nutzung der Kernenergie in Form einer Atombombe war eine Art Wettkampf.

Bau einer Atombombe

Die Nationalsozialisten beauftragen Werner Heisenberg. Ihm gelang der Bau glücklicherweise nicht. Ganz im Gegensatz zu Robert Oppenheimer. Er versammelte 1942 die wichtigsten Physiker zur Entwicklung der Atombombe unter dem Decknamen “das Manhatten Projekt”. Sie wollten der deutschen Atombombe zuvorkommen.

Eine Atombombe nutzt die Neutronen, die bei der Kernspaltung entstehen für eine Kettenreaktion. Diese Neutronen können nämlich wieder einen Urankern spalten. Wie durch eine Lawine von Kernspaltungen kommt es zur explosionsartigen Freisetzung der Kernenergie. Als Oppenheimer die grausamen Folgen der Atombombe 1945 in Hiroshima sah, wurde er zum Atomwaffengegner.

Zusammenfassung zur Uranstrahlung

Lass uns abschließend zusammenfassen, was du zum Alpha- oder Gammastrahler Uran und seinen Isotopen erfahren hast. Natururan findet man in Gesteinen. Es besteht größtenteils aus dem Isotop U-238 und wandelt sich mit der Zeit durch Alphastrahlung zu Blei um.

Bei angereichertem Uran wird der Anteil des Isotopes U-235 künstlich so erhöht, dass der Urankern mit Neutronen gespaltet werden kann und dabei Energie frei wird, die Atomkraftwerke nutzen können. Die bei der Kernspaltung entstehenden Neutronen können eine Kettenreaktion auslösen. So funktioniert die grausame Atombombe, wie sie erstmals im Manhatten Projekt gebaut wurde.

Abschlussfrage

Leider bringt die Idee der Kernspaltung in Atomkraftanlagen nicht nur Vorteile mit sich. Es gibt viele Atomkraftgegner und man arbeitet fieberhaft daran, Atomkraft durch Wind- und Solarenergie zu ersetzen. Kannst du herausfinden, weshalb?

Informationen zum Video
1 Kommentar
  1. Default

    Bei der Übungsaufgabe "Ordne die Spaltungsprozesse von Uran" ist bei einem Feld die Kernladungszahl leider nicht korrekt

    Von Christoph B., vor etwa einem Jahr