Advent, Advent, 1 Monat weihnachtliche Laufzeit geschenkt.

Nicht bis zur Bescherung warten, Aktion nur gültig bis zum 18.12.2016!

Textversion des Videos

Transkript Elektrischer Schwingkreis – Thomson'sche Schwingungsgleichung

Hallo und herzlich willkommen zu Physik mit Kalle! Dieses Video gehört ins Gebiet Schwingungen und Wellen und beschäftigt sich im 2. Teil der Reihe zum elektrischen Schwingkreis mit der Thomson'schen Schwingungsgleichung. Für dieses Video solltet ihr bereits Teil 1 der elektrischen Schwingkreisreihe gesehen haben. Wir lernen heute, was die Thomson'sche Schwingungsgleichung ist bzw. was ich mit ihr ausrechnen kann, wie ich sie herleite und welche Art von Schwingung sie eigentlich beschreibt. Und auf geht's. Die Thomson'sche Schwingungsgleichung gibt an, mit welcher Frequenz ein Schwingkreis schwingt, abhängig von der Kapazität C des Kondensators und der Induktivität L der Spule. Wir können sie mithilfe des Energieerhaltungssatzes herleiten. Und wie das geht, sehen wir uns im nächsten Kapitel an. Wir hatten im letzten Video gehört, dass ein Schwingkreis schwingt, indem er Energie zwischen der Spule und dem Kondensator hin und her transferiert. Dabei gilt natürlich der Energieerhaltungssatz. Das heißt, auch wenn sich die Energien in Spule und Kondensator ständig verändern, so ist ihre Summe konstant. Ich kann also aufschreiben: Die elektrische Energie im Kondensator ½CU2 + die magnetische Energie in der Spule ½LI2 = konstant. Wir machen erst einmal ein paar Randnotizen. Wir wissen: Die Ableitung der Ladung nach der Zeit QPunkt ist der Strom (I). Außerdem wissen wir: Q=C×U. Wenn ich das nach der Zeit ableite, erhalte ich: QPunkt=C×UPunkt. Und daraus kann ich folgern: I=C×UPunkt. Wir wissen, die Spannung zur Zeit t, U(t), folgt der Formel: U(t) = Scheitelspannung (U^)×sin(ωt+φU). Wenn wir das nach der Zeit ableiten, erhalten wir: UPunkt(t)=(U^)×ω×cos(ωt+φU). Und wenn ich das mit der Kapazität × nehme, habe ich, siehe die blaue Formel oben, den Strom zum Zeitpunkt t errechnet. I(t) ist also: I(t)=C×(U^)×ω×cos(ωt+φU). Der Cosinus (cos) ist ja auch eine sinusförmige Funktion. Und da uns nur die Scheitelspannung interessiert, ist uns die Phase erst einmal egal. Wir sehen: C×(U^)×ω = der Scheitelstrom (I^). Wir schreiben unseren Ansatz mal ein wenig genauer. Zu dem Zeitpunkt, zu dem die maximale Spannung herrscht, also die Scheitelspannung, ist der Strom gleich 0. Die gesamte Energie ist im Kondensator und ich kann sie berechnen mit: ½×C×(U^)2. Wenn der Strom maximal ist, ist die Spannung 0. Dann ist die gesamte Energie in der Spule, und diese kann ich berechnen mit: ½×L×(I^)2. Die beiden müssen gleich sein. Ich kann nun die Scheitelspannung von rechts unten einsetzen und erhalte: ½×C×(U^)2=½×L×C2×(U^)2×ω2. Und daraus kann ich nun die Kreisfrequenz meines Schwingkreises berechnen: ω2=(C×(U^)2)/(L×C2×(U^)2). Da lässt sich Einiges wegkürzen und übrig bleibt: ω2=1/(L×C). Daraus folgt, das ω meines Schwingkreises =1/\sqrt(L×C). Und aus ω kann ich nun auch die Periodendauer und die Frequenz berechnen. Wir erinnern uns: Die Periodendauer (T) war 2π/ω und die Frequenz (f) war ω/2π. Damit ist also T=2×π×\sqrt(L×C). Und die Frequenz, die ja 1 / die Periodendauer ist, ist: f=1/(2×π×\sqrt(L×C)). Und dies ist der Zusammenhang, den man die Thomson'sche Schwingungsgleichung nennt. Im letzten Kapitel wollen wir uns jetzt noch ansehen, was für eine Art von Schwingung diese Gleichung genau beschreibt. Vielleicht ist es euch auch schon aufgefallen: Die Thomson'sche Schwingungsgleichung vernachlässigt den Ohmschen Widerstand R des Schwingkreises. Das heißt, sie behandelt einen idealen Schwingkreis. Denn jeder Stromkreislauf hat einen Widerstand, außer er ist komplett supraleitend. Sie beschreibt daher eine ungedämpfte Schwingung. Wir wollen uns den Unterschied zwischen einer gedämpften und einer ungedämpften Schwingung noch einmal kurz mit 2 kleinen Zeichnungen ansehen. Die ungedämpfte Schwingung hat, wie wir gerade hergeleitet haben, die Frequenz f=1/(2×π×\sqrt(L×C)). Ihre Frequenz ist konstant und ihre Amplitude ändert sich nicht. Die gedämpfte Schwingung dagegen hat eine etwas kleinere Frequenz. Ihr genauer Wert ist: f=1/(2×π)×\sqrt(1/(L×C)-(R2/4L2)). Das heißt, sie benötigt ein wenig länger für ihre Schwingungen, abhängig davon, wie stark die Dämpfung ist. Aber der wichtigere Unterschied ist: Ihre Amplitude sinkt mit der Zeit. Und das ist natürlich nicht so gut. Eine ungedämpfte Schwingung wäre für viele Anwendungen relativ praktisch. Man kann allerdings durch periodische Energiezufuhr aus einem gedämpften einen ungedämpften Oszillator machen. Man nennt dies eine erzwungene Schwingung. Und wie das geht, wollen wir uns im nächsten Video ansehen. Wir wollen noch einmal wiederholen, was wir heute gelernt haben. Mit der Thomson'schen Schwingungsgleichung kann man die Eigenfrequenz eines Schwingkreises berechnen. Man kann sie aus dem Energieerhaltungssatz herleiten und sie besagt: Die Frequenz des Schwingkreises f=1/(2×π×\sqrt(L×C)). Die Thomson'sche Schwingungsgleichung beschreibt allerdings nur ungedämpfte Schwingungen. Bei gedämpften Schwingungen ist die Frequenz ein bisschen kleiner. Ihr genauer Wert ist: f=1/(2×π)×\sqrt(1/(L×C)-(R2/4L2)).   So, das war es schon wieder für heute. Ich hoffe, ich konnte euch helfen. Vielen Dank für das Zuschauen, vielleicht bis zum nächsten Mal, Euer Kalle

Informationen zum Video