Advent, Advent, 1 Monat weihnachtliche Laufzeit geschenkt.

Nicht bis zur Bescherung warten, Aktion nur gültig bis zum 18.12.2016!

Textversion des Videos

Transkript Elektrischer Schwingkreis – Meißner-Schaltung

Hallo und herzlich willkommen zu Physik mit Kalle. Wir beschäftigen uns heute mal wieder auf dem Gebiet Schwingungen und Wellen mit dem dritten Teil der Reihe zum elektrischen Schwingkreis, indem wir uns die Meißner-Schaltung genau ansehen wollen. Für dieses Video solltet ihr bereits die beiden vorhergehenden Teile über den Schwingkreis gesehen haben. Wir lernen heute, was die Meißner-Schaltung ist und wofür man sie braucht, und wie das Ganze aufgebaut wird und funktioniert. Die Meißner-Schaltung, die man auch Meißner-Oszillator oder Rückkopplungsschaltung nennt, erzeugt in einem Schwingkreis eine ungedämpfte, sinusförmige Schwingung. Mit der Meißner-Schaltung konnten also erstmals höherfrequente stabile elektrische Schwingungen erzeugt werden, was in der Kommunikationstechnik ein deutlicher Fortschritt war. Sie erzeugt diese stabilen Schwingungen mit einer periodischen Energiezufuhr, die duch Rückkopplung erreicht wird. Dazu nimmt man heutzutage meistens Transistoren her. Meißner hat in seinem ursprünglichen Versuchsaufbau eine Elektronenröhre als Verstärker verwendet. Wie der Aufbau der Meißner-Schaltung genau aussieht, das wollen wir uns jetzt im nächsten Kapitel ansehen. Wir fangen mal an mit einer Gleichstromquelle, sagen wir mal ungefähr 100V und einem Schwingkreis. Dieser besteht aus einer Spule und einem Kondensator, parallel geschaltet, und ich markiere ihn mal blau, damit wir ihn nicht aus den Augen verlieren. Das nächste Bauteil ist die gerade eben schon angesprochene Elektronenröhre, die als Verstärker genutzt wird. Man nennt sie dann eine Vakuumtriode. Und die müssen wir uns ein wenig genauer ansehen. Durch die Heizspannung Uh treten in der Vakuumtriode, in der, wie der Name schon sagt, Vakuum herrscht, Elektronen aus. Durch unsere Spannung von ca. 100V werden die Elektronen eigentlich zur Kathode hin beschleunigt. Wie der Name Triode schon sagt, hat unsere Elektronenröhre aber nicht 2, sondern 3 Anschlüsse. Und das ist der Trick. In der Nähe der Kathode wurde ein Gitter installiert, und zwischen dem Gitter und der Kathode liegt eine Bremsspannung an. Das heißt, das von den Elektronen, die von der Kathode ausgehen, nur sehr sehr wenige wirklich die Kathode erreichen, die meisten werden von dem Gitter abgefangen. Im gleichen Stromkreislauf wie die Bremsspannung, befindet sich eine zweite Spule, die so angeordnet ist, dass sich das Magnetfeld der ersten auf sie auswirkt. Und damit ist die Meißner-Schaltung auch schon fertig aufgebaut. Jetzt wollen wir mal sehen, wie das Ganze funktioniert. Wenn ich meine Spannungsquelle nun anschalte, fließt ein kleiner Strom durch meine Spule. Und der reicht auch schon, denn dadurch gerät mein Schwingkreis in eine kleine Schwingung. Und was nun passiert, ist folgendes: Wenn im Schwingkreis der Strom in der richtigen Richtung durch die Spule fließt, in unserem Falle wäre das, angegeben in der physikalischen Stromrichtung, das heißt, der Richtung, in der die Elektronen fließen, von oben nach unten, dann wird in der zweiten Spule eine Spannung induziert, die die Bremsspannung schwächt. Dadurch fließt ein viel stärkerer Strom durch die Vakuumtriode, und dem Schwingkreis wird Energie zugeführt. In der anderen Hälfte der Schwingunsdauer fließt der Strom in der falschen Richtung durch die Spule, sodass die Bremsspannung noch verstärkt wird. Dann fließt noch weniger Strom durch die Triode. So wird die Schwingung also in jeder Periode angeregt. Und da mein Schwingkreis seine Verstärkung selbst steuert, geschieht sie auch in seiner Eigenfrequenz. Das Ergebnis ist eine ungedämpfte, sinusförmige Schwingung. Wir wollen nochmal wiederholen, was wir heute gelernt haben: In der Meißner-Schaltung wird einem Schwingkreis periodisch Energie zugeführt. Man nennt dies eine erzwungene Schwingung und sie sieht aus wie eine ungedämpfte sinusförmige Schwingung. Die Funktionsweise der Meißner-Schaltung ist wie folgt: Das Magnetfeld der Schwingkreisspule induziert in einer zweiten Spule eine Spannung. Diese Spannung steuert einen Verstärker. Heutzutage nimmt man meistens Transistoren, damals war es eine Vakkuumtriode, sodass in einer Hälfte jeder Schwingungsdauer dem Schwingkreis Energie zugeführt wird. So, das war es schon wieder für heute, ich hoff, ich konnte euch helfen. Vielen Dank für's Zuschauen, vielleicht bis zum nächsten Mal Euer Kalle              

Informationen zum Video
1 Kommentar
  1. Default

    Warum erreichen die Elektronen, die von der Kathode aus gehen danach die Kathode? Die Elektronen sollten doch, nachdem sie die Kathode verlassen haben, die Anode erreichen... !?!?

    Von Pollmann Ralf, vor fast 4 Jahren