Textversion des Videos

Transkript Winkelfunktionen – Spezielle Funktionswerte

Hallo, liebe Mathematikinteressierte. Hier ist André mit einem Video zu den Winkelfunktionen. Es geht heute um spezielle Funktionswerte. Welche Voraussetzungen solltet ihr dafür mitbringen? Ihr solltet: 1. Einfache geometrische Begriffe kennen und anwenden können. Dreiecke, gleichseitige, rechtwinklige und so weiter sollten für euch keine Fremdwörter sein. 2. Ihr solltet den Lehrsatz des Pythagoras kennen und anwenden können. 3. Ihr solltet gut vertraut sein mit einfachen Winkelfunktionen und deren Anwendung: Sinus, Kosinus, Tangens. Wir kommen zum Problem. Ich bitte euch einmal, jeder einen Taschenrechner zur Hand zu nehmen. Habt ihr ihn? Dann berechnet einmal den Wert des Ausdrucks ½×\sqrt(3). Habt ihr das? Bis auf 4 Stellen hinter dem Komma habe ich das auch getan und hier aufgeschrieben. Und jetzt ein anderer Wert zum Vergleich. Berechnet mit dem Taschenrechner den Wert von sin60° und notiert ihn bis auf 4 Stellen nach dem Komma. Habt ihr das? Was fällt euch auf? Beide Werte stimmen mit der angegebenen Genauigkeit überein. Ist das ein Zufall? Oder ist tatsächlich ½×\sqrt(3)=sin60°? Wir wollen versuchen, dafür den Beweis zu führen.  Die Behauptung lautet: sin60°=½×\sqrt(3). Für die Beweisführung habe ich ein gleichseitiges Dreieck mit der Seitenlänge a gezeichnet. Nun fällen wir das Lot von dem oberen Eckpunkt des Dreiecks auf die entsprechende Dreiecksseite unten. Wir erhalten 2 neue Dreiecke. Für die Beweisführung benutzen wir das linke Dreieck. Wegen der Gleichseitigkeit des Ursprungsdreiecks hat es einen Winkel 60°, wegen der Lotbedingung einen 2. Winkel 90°. Das Lot hat die Grundseite halbiert. Daher beträgt die rot untersetzte Seite im kleinen Dreieck links a/2 oder ½a. Der sin60° ist laut Definition gleich Gegenkathete (hier blau) durch Hypotenuse (hier schwarz dargestellt). Wir berechnen die Länge der Gegenkathete g. Nach dem Lehrsatz des Pythagoras erhalten wir für das linke rechtwinklige Hilfsdreieck: a2=g2+(a/2)2. Daraus ergibt sich schließlich ganz rechts: g2+¼a2. Wir bringen nun das ¼a2 auf die linke Seite. Subtrahieren. Und erhalten links: 4/4a2 (ein ganzes a2 sozusagen) -¼a2=3/4a2=g2. Wir ziehen die Wurzel und erhalten: (\sqrt(3)/ \sqrt(4))a oder, weiter vereinfacht, (\sqrt(3)/2)a=g. Den Wert setzen wir in die untere Formel ein und erhalten (\sqrt(3)/2)a im Zähler, das ist die Gegenkathete, geteilt durch a, das ist die Hypotenuse im linken rechwinkligen Dreieck. Nun wird gekürzt. Wir erhalten \sqrt(3)/2=½×\sqrt(3). Der Beweis wurde geführt.  Die nächste Behauptung: cos60°=½. Für den Beweis können wir wieder die Zeichnung links unten verwenden. cos60°=Ankathete/Hypotenuse. Wir entnehmen der Zeichnung: Ankathete=½a im Zähler, Hypotenuse=a im Nenner. Wir können nun kürzen, das Ergebnis ist ½, was zu beweisen war.  Die nächste Behauptung: tan60°=\sqrt(3). Nach Definition ist der Tangens=Gegenkathete/Ankathete. Die Gegenkathete, so erinnert euch, beträgt g=(\sqrt(3)/2)a. Wir setzen in die Formel für den Tangens ein. Im Zähler (\sqrt(3)/2)a, im Nenner ½a. Wir vereinfachen den Ausdruck, indem wir mit dem Reziproken des Nenners multiplizieren. Nach Kürzen ergibt sich: tan60°=\sqrt(3). Was zu beweisen war. Die nächste Behauptung: sin30°=½. Wir können die Zeichnung wieder verwenden, müssen jetzt allerdings den Winkel 30° betrachten. sin30° ist der Quotient aus Gegenkathete und Hypotenuse. Wir setzen ein: ½a im Zähler, a im Nenner. Nach Kürzen, dividieren durch a in Zähler und Nenner, erhalten wir sin30°=½. Was zu beweisen war. Die nächste Behauptung: cos30°=½\sqrt(3). cos30° ist laut Definition der Quotient aus Ankathete und Hypotenuse. Die Ankathete ist g=(\sqrt(3)/2)a. Dieser Ausdruck steht im Zähler. Im Nenner bleibt die Hypotenuse=a. Wir kürzen durch a und erhalten \sqrt(3)/2=½\sqrt(3). Somit ist cos30°=½\sqrt(3), was zu beweisen war. Den tan30° können wir berechnen, indem wir sin30°/cos30° rechnen. Das gilt nach Definition. Setzen wir die Werte ein, erhalten wir, nachdem wir gekürzt haben, 1/\sqrt(3). Das Ergebnis noch schnell notiert und weiter geht es. Die nächste Behauptung: sin45°=½\sqrt(2). Für den Beweis benötigen wir ein gleichschenkliges, rechwinkliges Dreieck, wie ich unten links dargestellt habe. Wegen dem rechten Winkel und der Gleichschenkligkeit sind die beiden Basiswinkel=45°. Nach dem Lehrsatz des Pythagoras erhalten wir h2=a2+a2=2a2. Wir ziehen die Wurzel und es ergibt sich h=\sqrt(2)a. sin45° ist nach Definition Gegenkathete/Hypotenuse. Die Gegenkathete ist hier blau, gleich a. Die Hypotenuse wurde berechnet \sqrt(2)a. Nach Kürzen erhalten wir 1/\sqrt(2). Wenn wir den Zähler und den Nenner mit \sqrt(2) multiplizieren und berücksichtigen, dass \sqrt(2)×\sqrt(2)=2 ist, erhalten wir nach einigen Umformungen sin45°=½\sqrt(2). Was zu beweisen war. So, das Ergebnis noch schnell notieren und weiter geht es. Nächste, vorletzte Behauptung: cos45°=½\sqrt(2). Wir schauen uns unsere Zeichnung an und setzen die entsprechenden Werte ein. Ganz analog wie beim Sinus von 45° erhalten wir hier cos45°=½\sqrt(2). Was zu beweisen war. Das Ergebnis noch schnell notiert und dann geht es zum letzten Beweis tan45°=1. Der Tangens ist der Quotient aus Gegenkathete und Ankathete. Die Gegenkathete und Ankathete sind jeweils a. Wir kürzen und erhalten tan45°=1. Was zu beweisen war.  Nun noch dieses schöne Ergebnis notiert und dann können wir uns an unseren Resultaten erfreuen. Das war ein wirkliches Mammutprogramm. Ich bedanke mich für euer Durchhaltevermögen. Vielleicht habt ihr auch ein wenig Spaß gehabt. Bis zum nächsten Mal alles Gute und viel Erfolg. Tschüss.

Informationen zum Video