Advent, Advent, 1 Monat weihnachtliche Laufzeit geschenkt.

Nicht bis zur Bescherung warten, Aktion nur gültig bis zum 18.12.2016!

Textversion des Videos

Transkript Steigung in einem Punkt

In vielen Anwendungen ist es sinnvoll, die Steigung in einem Punkt zu bestimmen und nicht als Mittelwert in einem Intervall. Beim Wandern in den Bergen ist besonders die Steigung der unterschiedlichen Abschnitte des Berges von Interesse.

Dir wird klar sein, dass die Steigung in einem Abschnitt nicht konstant ist. Um nun beim Wandern sich die Kraft möglichst gleichmäßig einzuteilen, wäre es daher interessant, an welcher Stelle sich die größte Steigung befindet.

Bisher hast du die mittlere Steigung immer über die Sekante und dem dazugehörigen Steigungsdreieck bestimmt. Dabei war die Formel für den **Differenzenquotienten D ist gleich f von x Minus f von x0 geteilt durch x Minus x0. Was geschieht mit der Sekante, wenn man nun die Stellen x null und x einander annähert?

Die Lage der Sekante ändert sich. Dabei entsteht eine Gerade, die sich an die Funktion anschmiegt und sie nur noch in einem Punkt berührt. Aus der Sekante wird also eine Tangente. Die Tangente gibt die Steigung in genau einem Punkt an. Wie kann man nun die Steigung in einem Punkt berechnen?

Steigung in einem Punkt berechnen

Wir modifizieren zuerst die Gleichung des Differenzenquotienten. Den Abstand zwischen x0 und x bezeichnen wir jetzt als h. Also x ist gleich x Null plus h.

Wir setzen nun für x gleich x null plus h in die Formel ein und erhalten D gleich f von x null plus h minus f von x null geteilt durch xo +h -xo. Im Zähler passiert dadurch nicht viel, aber im Nenner kürzt sich xo raus und h bleibt alleine stehen. Somit ist D gleich f von x null plus h minus f von x null geteilt durch h.

Neu an dieser Formel ist, dass wir nun nur noch eine Stelle x null benötigen. Der Parameter h gibt in dieser Formel die Genauigkeit unserer Rechnung an. Wenn du nun für h also sehr kleine Zahlen, welche sich der Null nähern, einsetzt, bekommst du einen guten Näherungswert für die gesuchte Steigung der Tangente.

Beispiel Setigung in einem Punkt

Schauen wir uns das einmal in einem Beispiel an. Dies ist die Funktion f von x gleich x hoch 3. Wie du sehen kannst, ist die Steigung an verschiedenen Punkten der Funktion sehr unterschiedlich.

Betrachte nun einmal den Punkt P mit den Werten (1|1). Zunächst setzten wir für h den Wert 1 ein und erhalten D gleich f von 1 plus 1 - f von 1 geteilt durch 1.

Setzt man die Funktionswerte ein so erhält man 2 hoch drei minus 1 hoch drei geteilt durch 1. Das ergibt 8-1 geteilt durch 1. Wir erhalten als Differenzenquotient gleich 7.

Um einen genaueren Wert für die Steigung im Punkt P zu erhalten setzen wir nun für h einen kleineren Wert ein. Zum Beispiel 0,5.

Zunächst setzten wir für h den Wert 0,5 ein und erhalten D gleich f von 1 plus 0,5 - f von 1 geteilt durch 0,5.Setzt man die Funktionswerte ein so erhält man 1,5 hoch drei minus 1 hoch drei geteilt durch 0,5. Das ergibt 3,375-1 geteilt durch 0,5. Wir erhalten als Differenzenquotient gleich 4,75.

Nun betrachten wir am Schaubild unsere Ergebnisse. Die Steigung im Punkt P wird durch die Steigung der Tangente am Punkt P beschrieben. Beim ersten Versuch haben wir h gleich 1 eingesetzt und die Steigung 7 erhalten. Wie du siehst kommt diese Steigung der Steigung im Punkt P noch nicht sehr nahe.

Beim zweiten Versuch haben wir h gleich 0,5 eingesetzt und die Steigung 4,75 erhalten. Wie du siehst kommen wir der Steigung der Tangente schon näher.

In einem neuen Versuch wollen wir uns der Steigung der Tangente weiter annähern. Hierzu benötigen wir ein möglichst kleines h. Wir wählen h gleich 0,01.

Zunächst setzten wir für h den Wert 0,01 ein und erhalten D gleich f von 1 plus 0,01 - f von 1 geteilt durch 0,01.Setzt man die Funktionswerte ein so erhält man 1,01 hoch drei minus 1 hoch drei geteilt durch 0,01. Das ergibt 1,030301-1 geteilt durch 0,01. Wir erhalten als Differenzenquotient gleich 3,0301.

Betrachten wir nun wieder das Schaubild, dann sehen wir, dass die Gerade aus unserem dritten Versuch mit der Tangente schon fast identisch ist. Das bedeutet, dass wir mit h gleich 0,01, eingesetzt in den Differenzenquotienten D, einen sehr guten Näherungswert für die Steigung im Punkt P erhalten haben.

Zusammenfassung

Abschließend fasse ich noch einmal kurz zusammen, was du im Video gelernt hast. Du kannst nun mithilfe des dir bereits bekannten Differenzenquotienten, durch eine geeignete Wahl des Parameters h, die Steigung in einem Punkt näherungsweise berechnen.

Dabei haben wir festgestellt, je kleiner wir h wählen, desto eher entspricht unser Ergebnis der Steigung der Tangente im Punkt P. An dieser Stelle sage ich jetzt: Tschüss und bis zum nächsten Mal.

Informationen zum Video
5 Kommentare
  1. Default

    Hallo
    Habe das Video der Herleitung des Differentialquotienten bzw. der ersten Ableitung nun selber schon gefunden!

    Von Hauser, vor fast 3 Jahren
  2. Default

    Hallo
    Bin neu bei Sofatur. Frage: In diesem Video (Steigung in einem Punkt) wird h eingeführt. Je kleiner h gewählt wird, umso genauer ergibt sich die berechnete Steigung der Tangente. Ich nehme an, dass die EXAKTE Steigung der Tangente man erhält, wenn man h gegen 0 streben lässt. Diese Steigung wäre dann wohl die eigentliche Ableitung einer Funktion an einem Punkt. In welchem Video finde ich nun aber die GRUNDSÄTZLICHE Herleitung, wie man zu den nachfolgenden Ableitungsformeln kommt? Man müsste ja wahrscheinlich h = 0 einsetzen / oder gegen 0 streben lassen! Wie geht dies?
    Vielen Dank.
    Walter

    Von Hauser, vor fast 3 Jahren
  3. Default

    Wie würde das Ergebniss aussehen wenn wir anstatt x hoch 3 x hoch 3 +1 hätten ?

    Von Amk1996 Prs, vor etwa 3 Jahren
  4. Patrik

    Hallo^^.
    Im Video wird z.B. die Steigung von f(x)=x³ im Punkt (1|1) näherungsweise berechnet. Die Steigung im Punkt (1|1) ist gleichzeitig die Steigung der Tangente, welche den Graphen im Punkt (1|1) berührt. Man kennt somit zwei Eigenschaften der Tangente. 1.) Sie besitzt den Berührpunkt (1|1) 2.) Sie hat den Anstieg von ca. 3,03. Zum Zeichnen einer Gerade genügen die Angaben ( vom Punkt (1|1) ein Steigungsdreieck zeichnen mit Anstieg 3,03 --> du erhältst einen weiteren Punkt --> die zwei Punkte miteinander verbinden --> Tangente entsteht)

    Ich hoffe, dass ich dir helfen konnte^^.

    Von Patrik Strauch, vor mehr als 3 Jahren
  5. Default

    Hallo:) das Video ist super. Ich kann bloß nicht ganz nachvollziehen wie du die Tangente aus den errechneten D zeichnest. Das geht mir zu schnell:( sorry da steh ich aufm Schlauch..

    Von Fibroe, vor mehr als 3 Jahren