Textversion des Videos

Transkript Newton-Verfahren – Beispiel

Newton-Verfahren-Beispiel

Hallo, schön, dass du mal wieder reinschaust. Heute wollen wir uns mit dem Newton-Verfahren beschäftigen. Wie du sicherlich noch weißt, kann man mit diesem Verfahren die Nullstellen von Funktionen näherungsweise bestimmen.

Die Iterationsvorschrift des Newton-Verfahrens lautet: x n plus 1 ist gleich x n minus f von x n geteilt durch f strich von x n.

Wir werden in anderen Videos noch sehen, dass das Newton-Verfahren nicht immer erfolgreich ist. Heute wollen wir uns aber mit einem Beispiel beschäftigen, bei dem das Newton-Verfahren zum Erfolg führt. Die Funktion f von x ist gleich x hoch drei plus 2x minus 1 hat genau eine Nullstelle.

Bevor wir mit dem Newton-Verfahren starten können, müssen wir zunächst die 1. Ableitung f Strich von x bilden. f Strich von x ist 3x hoch 2 plus 2

Unsere Iterationsvorschrift heißt nun: x n plus 1 ist gleich x n minus x n hoch frei + 2 mal x n minus 1 geteilt durch 3 mal x n zum Quadrat plus 2.

Wir wählen als Startwert x0 = 1 und setzen diesen Wert in die Iterationsvorschrift ein. Wir erhalten x 1 ist gleich 1 - 1 hoch drei plus 2x mal 1 - 1 geteilt durch 3 mal 1 hoch 2 +2. Wir erhalten x1= 1 - 2/5 = 0,6.

Diesen Wert setzen wir nun wieder in die Iterationsvorschrift ein, damit wir x2 erhalten. Wir rechnen wie im Schritt davor x 2 ist gleich 0,6 - 0,6 hoch 3 plus 2x mal 0,6 -1 geteilt durch 3x mal 0,6 hoch 2 plus 2 und erhalten: x2 = 0,6 - 0,416 geteilt durch 3,08 ist rund 0,464935. Wenn du möchtest, dann kannst du den Taschenrechner verwenden.

Den Wert x2 haben wir jetzt nur gerundet aufgeschrieben. Diesen Wert setzen wir wieder in die Iterationsvorschrift ein, damit wir den Wert x3 erhalten. Wir setzen x2 in die Iterationsvorschrift ein und erhalten

x3 ist rund 0,464935 - 0,0114678 ist rund 0,4534672

Nun bestimmen wir noch den Wert für x4 indem wir x3 in die Iterationsvorschrift einsetzen. Wir erhalten x4 ist rund 0,4534672 - 0,000007 ist rund 0,4534602.

Unser Näherungswert hat sich kaum geändert. Wir haben also unsere Nullstelle fast schon bestimmt. Wir setzen zur Sicherheit unseren letzten Wert x4 ist rund 0,4534602 in die Iterationsvorschrift ein, damit wir x5 berechnen können. x5 ist dann wieder etwa 0,4534. Dies ist unsere Nullstelle.

Zur Probe setzen wir diesen Wert in die Funktionsgleichung f von x = x³+2x-1 ein. f von 0,4543 ist gleich 0,4534 hoch 3 + 2 mal 0,4534 minus 1 ergibt 0,000006. Dies ist etwa 0.

Wir haben uns mit dem Newton-Verfahren sowie der Wahl des Starwertes x null, der Nullstelle sehr gut angenähert und das schon nach wenigen Schritten. Also hat das Newton-Verfahren hier funktioniert.

Schauen wir uns einmal den Graphen der Funktion f von x gleich x hoch 3 plus 2 mal x minus 1 genauer an. Wir sehen, dass der Funktionsgraph die x-Achse kurz vor 0,5 schneidet. Also hat das Newton-Verfahren den richtigen Wert für die Nullstelle bestimmt.

Ich hoffe, dass du die Nullstellenbestimmung mit Hilfe des Newton-Verfahrens verstanden hast und mit Hilfe des Verfahrens noch viele Nullstellen näherungsweise bestimmen wirst! Wir sehen uns bestimmt bald wieder! Tschüss!

Informationen zum Video