Advent, Advent, 1 Monat weihnachtliche Laufzeit geschenkt.

Nicht bis zur Bescherung warten, Aktion nur gültig bis zum 18.12.2016!

Textversion des Videos

Transkript Logistisches Wachstum – Rekursive Darstellung (1)

Hallo und herzlich willkommen bei sofatutor. In diesem Video geht es um die rekursive Funktionsvorschrift des logistischen Wachstums.

Um dieses Video gut verstehen zu können, solltest du schon Vorwissen über die beiden wichtigsten Wachstumsfunktionen im Schulunterricht - das lineare und das exponentielle Wachstum - haben. Außerdem solltest du wissen, was eine rekursive Funktionsvorschrift ist, und den Graphen bei logistischem Wachstum kennen.

Wir wollen heute anhand einer einfachen Aufgabe klären, wann wir mit Hilfe des Modells des logistischen Wachstums arbeiten können. Dazu benötigen wir die allgemeine rekursive Funktionsvorschrift für das logistische Wachstum.

Dabei kommen wir auch noch einmal auf die rekursiven Vorschriften für lineares und exponentielles Wachstum zurück. Anhand unseres Beispiels wollen wir die notwendigen Größen berechnen und nutzen, um mit der rekursiven Funktionsvorschrift die gestellten Fragen beantworten zu können.

Lineares, exponentielles und logistisches Wachstum

Fassen wir zunächst kurz zusammen, was wir schon wissen:

Lineares Wachstum bedeutet: In gleichen Zeitspannen nehmen die Werte um den gleichen Summanden zu. In der rekursiven Schreibweise erhalten wir: f zum Zeitpunkt t plus 1 ist gleich f von t plus m. Als Graph erhalten wir eine Gerade mit der Steigung m.

Exponentielles Wachstum bedeutet: In gleichen Zeitpannen werden die Werte mit dem gleichen Faktor q multipliziert. In der rekursiven Darstellung erhalten wir: f zum Zeitpunkt t plus 1 ist gleich q mal f(t). Als Graph erhalten wir den klassischen exponentiellen Verlauf mit dem Wachstumsfaktor q.

Wie sieht dies jetzt beim logistischen Wachstum aus? Wir kennen schon den klassischen Verlauf des Graphen beim logistischen Wachstum. Zur Erinnerung: Zunächst steigt das Wachstum ähnlich dem exponentiellen Wachstums, ab dem Wendepunkt verlangsamt sich die Zunahme und nähert sich der oberen Grenze.

Unser Ziel heute soll es sein, die rekursive Vorschrift an einem Beispiel zu entwickeln und daraus die allgemeine rekursive Funktionsvorschrift beim logistischen Wachstum herzuleiten.

Rekursive Vorschrift bei logistischem Wachstum an einem Beispiel

Auf einer einsamen Südseeinsel, weit ab von jeder anderen Zivilisation, leben 5000 Menschen. Drei Lausbuben verabreden sich an einem dieser langen und langweiligen Abende ein Gerücht in Umlauf zu setzen.

Die meist diskutierte Frage an diesem Abend ist, wie viele Tage es wohl dauern wird, bis es allen anderen Inselbewohnern zu Ohren gekommen ist. Die drei erkennen schnell, dass es nur eine Person gibt, die ihnen helfen kann: Der alte Dorflehrer!

Am nächsten Morgen tragen sie dem Lehrer ihr Problem vor: Der erste erklärt, er gehe davon aus, dass jeden Tag sicherlich 1700 Menschen neu hinzu kämen und somit nach 3 Tagen alle Bescheid wüssten.

Der Alte lobt seinen Schüler: "Du hast gut aufgepasst und unterstellst ein lineares Wachstum. Kannst du dir vorstellen, dass es einen Unterschied macht, wie viele Leute das Gerücht schon kennen? Jeder, der es kennt, kann es seinen Begegnungen weiter erzählen." Das leuchtet dem Jungen ein und er erkennt die Schwachstelle seines Modells.

Der zweite unterstellt einen Wachstumsfaktor von 3,5 und berechnet mühsam, dass es dann 6 Tage dauert, bis auch der letzte davon weiß.

Zum Zweiten sagt der Alte: “Du hast gut aufgepasst und nimmst ein exponentielles Wachstum an. Hast du bedacht, dass manche von uns sehr zurück gezogen leben und nicht viele Kontakte haben, so dass sich das Wachstum verlangsamen könnte, wenn die geselligen Mitbewohner davon erfahren haben?” Das leuchtet dem Jungen ein und auch er erkennt die Schwachstelle seines Modells.

Nun ist der Dritte gefordert, seine Idee zu verteidigen: "Ich habe mir überlegt, dass am Anfang noch fast jeder den wir treffen, dass Gerücht nicht kennt. Sehr schnell erfahren unsere Freunde und Eltern und Familienangehörige davon. Aber dann kommt der Punkt, an dem viele schon das Gerücht kennen.

Je mehr Leute davon wissen, umso schwerer wird es, jemanden zu finden, dem das Gerücht noch nicht zu Ohren gekommen ist. Tja, und irgendwann weiß es jeder, wer sollte dann noch neu dazu kommen? Leider habe ich keine Idee, wie ich das mathematisch aufschreiben kann, aber es scheint mir passend für die Verbreitung des Gerüchts."

Der alte Dorflehrer kann sein Glück kaum fassen und applaudiert begeistert: "Du hast eine tolle Idee gehabt. Diese hat sogar einen eigenen Namen in der Mathematik. Ein Wachstum, welches sich so verhält wie von dir beschrieben heißt logistisches Wachstum. In der Natur verhalten sich viele Wachstumsprozesse genau so. Ich will dir jetzt noch die Mathematik dazu erklären:

An jedem Tag t gibt es f von t Menschen, die von dem Gerücht wissen. Hier wohnen insgesamt 5000 Menschen, das ist unsere obere Schranke S, also gibt es noch 5000 minus f von t, die noch nicht von dem Gerücht gehört haben.

Damit sich euer Gerücht verbreitet müssen sich ein Wissender und ein Unwissender begegnen, dafür gibt es in der Theorie f von t mal S minus f von t Möglichkeiten.

In der Praxis finden allerdings nicht alle dieser theoretisch möglichen Begegnungen statt und nicht jede Begegnung führt zur Verbreitung des Gerüchtes. Nehmen wir einfach mal an, täglich würden 0,02 Prozent der theoretisch möglichen Begegnungen stattfinden und das Gerücht würde weitergegeben.

Damit würden jeden Tag 0,0002 mal f von t mal S minus f von t Menschen dazukommen, die neu von dem Gerücht erfahren hätten. Das ist unsere Änderungsrate. Wir sehen, dass die Änderungsrate proportional zum Produkt von f von t und S minus f von t ist und den Proportionalitätsfaktor k = 0,0002 hat.

Und schon kennt ihr die rekursive Vorschrift für die Funktion, die die Verbreitung eures Gerüchtes beschreibt: Zum Zeitpunkt t plus 1 wissen alle von dem Gerücht, die schon vorher davon wussten also f von t und alle neu hinzugekommenen, also 0,0002 mal f von t mal S minus f von t.

Zum Zeitpunkt t gleich 0 wisst nur ihr drei von dem Gerücht, damit können wir ausrechnen, wie viele Menschen nach einem Tag, also zum Zeitpunkt t = 1, Bescheid wissen. Wir erhalten eine Änderung von 2,9982 und somit ungefähr 6 Menschen die nach einem Tag informiert sind.

Ebenso berechnen wir mit Hilfe von f zum Zeitpunkt t = 1 f zum Zeitpunkt t = 2. Auf diese Weise berechnen wir dann die Anzahl der Wissenden von Tag zu Tag. Ich habe zur Berechnung einmal einen Computer zur Hilfe genommen. Dieser hat mir folgende Tabelle berechnet.

Am Tag t = 14 hat das Gerücht 4999,73184 Personen erreicht, dass sind gerundet 5000 Menschen, also das ganze Dorf. Es braucht also 14 Tage bis jeder im Dorf das Gerücht kennt. Übrigens kannst du an dem Schaubild gut erkennen, dass sich das Gerücht zwischen dem siebten und zehnten Tag am schnellsten verbreitet.

Damit endet der Dorflehrer seine Ausführungen und wendet sich wieder dem dritten Jungen zu: “Du wirst begeistert sein, mit deiner Schätzung von 14 Tagen zur Verbreitung des Gerüchts, hast du goldrichtig gelegen. Ich hoffe, ihr anderen zwei Lausbuben habt nun auch verstanden, warum ihr im Unrecht gewesen seid.”

Zusammenfassung

Nachdem wir mit Hilfe des Dorflehrers nun verstanden haben, dass es wohl ungefähr zwei Wochen dauern wird, bis sich das Gerücht auf der ganzen Insel verbreitet hat, fassen wir das Wesentliche zusammen. Der charakteristische Verlauf: Zunächst steigt das Wachstum ähnlich dem exponentiellen Wachstum, ab dem Wendepunkt verlangsamt sich die Zunahme und nähert sich der oberen Grenze.

Du hast gesehen, dass die Änderungsrate mit dem Proportionalitätsfaktor k proportional zum Produkt von f von t und S minus f von t ist.

Die rekursive Vorschrift erhältst du, wenn wir die Summe aus dem Funktionswert zum Zeitpunkt t und der Änderungsrate zum Zeitpunkt t bilden. Durch sukzessives Einsetzen der einzelnen Zeitpunkte haben wir dann mit der rekursiven Vorschrift die einzelnen Werte für t = 1 bis 14 bestimmt.

So, nun hast du zum ersten Mal die rekursive Vorschrift bei logistischem Wachstum kennengelernt und freust dich hoffentlich schon auf unser nächstes Video, bei dem wir diese Formel dann nutzen, um Aufgabenstellungen zu bearbeiten, bei denen es um logistisches Wachstum geht.

Tschüss und bis bald!

Informationen zum Video