Informationen zum Video
4 Kommentare
  1. Default

    Hallo.
    1. Bei z=40 und x=0 erhältst du in der Tat diesen Wert!
    2. Die Gleichung wäre x_1;2=±-/(20-y^2)/3.
    Hört sich richtig an, was du gerechnet hast.

    Von Frank Steiger, vor mehr als einem Jahr
  2. Default

    Ja es hilft mir weiter, habe dann noch zwei weitere Fragen zum Verständnis.
    1. Wenn ich dann z=40 einsetzen würde hätte ich y_1 = 6,32..., dies wäre ja schon aus meiner Grenz raus und würde nicht weiter betrachtet werden, richtig?

    2. Wenn ich dann nach x umstelle wäre es doch x1;2=-/(20-y²/3) und somit x1=2,58... und x2= -2,58...? So hätte ich ja meine 4 Punkte damit ich meine Höhenlinie meines Parabloiden einzeichnen kann?

    Von Andre H 87, vor mehr als einem Jahr
  3. Default

    Also: ich hoffe, ich kann die Frage einigermaßen beantworten. Sei z=20. Dann kann die Gleichung 20=3x^2+y^2 nach y aufgelöst werden. Es entstehen zwei Funktionen:
    1. y_1=-/(20-3x^2) und
    2. y_2=- -/(20-3x^2)
    '-/' steht für die Wurzel.
    Für x=0 ist y_1≈4,5 und y_2≈-4,5, allerdings nicht 0.
    Für z=0 gibt es nur eine Lösung und das ist der Koordinatenursprung.
    Der Faktor spielt meines Erachtens sehr wohl eine Rolle.
    Ich hoffe, ich habe deine Frage richtig verstanden und konnte dir helfen.

    Von Frank Steiger, vor mehr als einem Jahr
  4. Default

    Hallo Frank,

    ich habe eine Frage. Wir hatten in einer Übungsaufgabe f(x,y)= 3x²+Y², mit der Vorschrift für -5 < x < 5 und -5 < y < 5. Hierbei hat der Dozent g(x,y)= x² + y² gemacht und als nächstes gewählt z= 20 =3x² + y. In dem Höhenlienendiagramm Ebene ( x,y) ergab sich, dass dann der Koordinatenursprung der start war und der erste Kreis bei z ca.= 20 und der zweite bei z ca.=40. Spielt also der Faktor vor der Variablen keine Rolle?

    Von Andre H 87, vor mehr als einem Jahr