Advent, Advent, 1 Monat weihnachtliche Laufzeit geschenkt.

Nicht bis zur Bescherung warten, Aktion nur gültig bis zum 18.12.2016!

Textversion des Videos

Transkript Gleichungen durch Rückwärtsrechnen lösen

Hallo und herzlich willkommen. In diesem Video geht es um das Lösen von Gleichungen mit einer Variablen. Das Lösen von Gleichungen bildet ein Herzstück der Mathematik, und es gibt zahlreiche Lösungsverfahren In diesem Video wollen wir lineare Gleichungen durch Rückwärtsrechnen lösen.

Zunächst werden wir wiederholen, was eine Variable ist und welche Rolle sie in einem Term spielt. Wir werden kurz besprechen, was eine Gleichung ist und was man unter der Lösung einer Gleichung versteht. Dann werden wir uns die Rückwärtsrechnen-Methode erarbeiten, mit der man die Lösung einer Gleichung erhält. Das Ganze probieren wir dann selbst an einem weiteren Beispiel aus und fassen am Schluss das Gelernte noch mal zusammen.

Definition Variable

Was ist eine Variable? Eine Variable in einem Term, also einem beliebigen Rechenausdruck, ist ein Platzhalter für eine Zahl und wird meist mit einem kleinen Buchstaben bezeichnet, z.B. einem x.

Verwendest du eine Variable in einem Term, hältst du dir offen, was du dafür einsetzt. Der Zahlenwert des Terms 4 + 5 ist eindeutig festgelegt – nämlich 9, während der Zahlenwert der Terms 4 + x davon abhängt, was du für x einsetzt. Setzt du 3 ein, kommt 7 heraus, setzt du 8 ein, kommt 12 heraus usw.

Definition Gleichung

Was ist eine Gleichung? Verknüpfst du zwei Terme, wobei mindestens einer eine Variable enthält, durch ein Gleichheitszeichen, hast du eine Gleichung, z.B. 4 + x = 10. Eine Gleichung wird zu einer Aussage, wenn du etwas für x einsetzt. Aussagen können wahr oder falsch sein.

Setzt du 3 für x ein, lautet die Aussage 4 + 3 = 10. Das ist eine falsche Aussage. Setzt du hingegen für x 6 ein, erhältst du 4 + 6 = 10. Das ist eine wahre Aussage.

Die x-Werte, für die eine wahre Aussage entsteht, nennt man Lösung der Gleichung. In unserem Beispiel ist 6 also eine Lösung. Wir stießen durch Probieren darauf. Gleich werden wir sehen, wie man Gleichungen mit System löst, nämlich durch Rückwärts rechnen. Doch zunächst noch ein Wort zu Gleichungen.

Problem in eine Gleichung übersetzen

Gleichungen fallen meistens nicht irgendwie vom Himmel, sondern sind oft Übersetzungen eines Sachverhalts oder eines Problems in die Sprache der Mathematik. Mindestens genauso wichtig wie die Lösung einer Gleichung ist die Überlegung, wie man überhaupt zur geeigneten Gleichung kommt.

Ein Beispiel: Du verpackst ein würfelförmiges Geschenk mit Geschenkband und benötigst insgesamt 2 Meter, wovon 16 cm für die Schleife benötigt werden. Wie groß ist die S Kantenlänge des Würfels?

Wie übersetze ich dieses Problem in eine Gleichung? Gesucht ist die Seitenlänge in Zentimetern, also ist das die Variable x. Wenn ich das Band so wie gezeigt um das Geschenk wickle, lege ich mit ihm acht Seitenlängen x zurück. Dazu kommen noch 16 cm für den Knoten, 8 mal x + 16.

Da du insgesamt 2 Meter - also 200 cm - Geschenkband benötigst, lautet unsere Gleichung: 8 mal x + 16 = 200.

Sehr schöne Vorlagen für Gleichungen liefern auch Zahlenrätsel, zum Beispiel dieses: Vom Siebenfachen einer Zahl subtrahierst du 15 und erhältst 69. Wie lautet die Zahl? Diese Zahl ist jetzt die Variable, und die Rechenvorschrift übersetzen wir zu 7 mal x - 15 = 69.

Gleichungen durch Rückwärtsrechnen lösen Beispiel 1

So nun zu der wichtigsten Frage im Video: Wie lösen wir solche Gleichungen?

Betrachten wir das Geschenkbeispiel, die Gleichung lautete 8 mal x +16 = 200. Die linke Seite der Gleichung ist eine Rechenvorschrift, die du normalerweise beim x angefangen von links nach rechts abarbeitest, man könnte auch sagen vorwärts: erst 8 mal x , dann plus 16. Da wir das Ergebnis der Rechnung, nämlich 200, kennen, aber x suchen, bietet es sich an, vom Ergebnis her rückwärts zu rechnen.

Wir gehen vom Ergebnis 200 zurück und rechnen als erstes anstelle von + 16 minus 16, 200 - 16 = 184. Aus vorwärts plus 16 wird rückwärts minus 16.

Im zweiten Rückwärtsschritt teilen wir jetzt durch 8. 184 geteilt durch 8 = 23. Statt x mit 8 zu multiplizieren, teilen wir 184 durch 8. Unter dem x steht nun die 23. Das bedeutet: x gleich 23, das ist die Lösung der Gleichung.

Führen wir die Probe durch und setzen in den Rechenausdruck 8 mal x plus 16 die Zahl 23 ein. Wir erhalten die Rechnung 8 mal 23 plus 16 = 184 + 16 = 200. Setzen wir also 23 für x in die Gleichung ein erhalten wir eine wahre Aussage. Für die gesuchte Kantenlänge des würfelförmigen Geschenks erhalten wir die Lösung 23 cm. Als Antwortsatz formulieren wir: Die Kantenlänge des Würfels beträgt 23 cm.

Reflektieren wir aber noch einmal unsere Lösungsstrategie: Die Regeln des Rückwärtsrechnens sind demnach: Aus einer Addition wird rückwärts eine Subtraktion, aus aus einer Multiplikation wird rückwärts eine Division. Und umgekehrt: Aus einer Subtraktion wird eine Addition und aus einer Division eine Multiplikation.

Gleichungen durch Rückwärtsrechnen lösen Beispiel 2

Wenden wir das auf das zweite Beispiel - das Zahlenrätsel - an. Die Gleichung lautete 7 mal x -15 = 69. Würden wir eine Zahl für x in den Rechenausdruck x mal 7 minus 15 einsetzen, so würden wir - wegen Punkt vor Strich - die Zahl mit 7 multiplizieren und dann 15 subtrahieren - als Ergebnis soll 69 rauskommen.

Und nun rückwärts. Wir starten beim Ergebnis - 69 - und rechnen im ersten Rückwärtsschritt jetzt plus 15, also 69 + 15 = 84. Im zweiten Rückwärtsschritt rechnen wir nun geteilt durch 7 , also 84 geteilt durch 7 gleich 12. Das ist die gesuchte Zahl unseres kleinen Rätsels. x gleich 12.

Der Antwortsatz zu dem Zahlenrätsel lautet kurz und knackig: Die gesuchte Zahl heißt 12.

Zusammenfassung

Fassen wir zusammen: Eine Gleichung kannst du durch Rückwärtsrechnen lösen. Wichtig ist hierbei zu beachten: Aus einer Addition wird eine Subtraktion, aus einer Multiplikation einer Division und andersherum. So kannst du lineare Gleichungen schnell lösen! Tschüss!

Informationen zum Video
7 Kommentare
  1. Default

    Gut

    Von Sylviahertel, vor 26 Tagen
  2. Image

    cool, hat mir geholfen

    Von Ki Ni Az, vor mehr als einem Jahr
  3. Default

    Klares Video, kurzer und bündiger Text und viele Informationen. Das BEESSTTEE VIDEO BIS JETZT!

    Von Purevalencia, vor mehr als einem Jahr
  4. Default

    mein Lehrer kann es mir einfach nicht erklären und wenn ich mir ein Video anschaue dann verstehe ich es sofort dannnnnnnnnnkkkkeeeeee!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

    Von R Masic, vor mehr als einem Jahr
  5. Default

    Sehr hilfreich für Mathe-Unterricht mit Inklusion. Die Schüler mit Lernförderbedarf werden die Gleichungen jetzt immer so lösen, die Haupt- und Realschüler durch Äquivalenzumformen.
    Danke, hat mir sehr geholfen.

    Von Ines Heerwagen, vor fast 2 Jahren
  1. Default

    Sehr anschauliche und verständliche Erklärung zu Lösung von Termen mit einer Variable. Habe das Thema sehr gut verstanden. Ist besonders für Menschen sehr hilfreich, die eine Matheschwäche haben.

    Von Rechtswissenschaft Koeln, vor etwa 2 Jahren
  2. 817201420322

    Super video!

    Von Killjoy P., vor etwa 2 Jahren
Mehr Kommentare