Advent, Advent, 1 Monat weihnachtliche Laufzeit geschenkt.

Nicht bis zur Bescherung warten, Aktion nur gültig bis zum 18.12.2016!

Textversion des Videos

Transkript Exponentielle Wachstumsvorgänge – Modellierung

Was haben das Wachstum eines Sparguthabens, die Entwicklung einer Hasenpopulation und die Ausbreitung eines Krankheitserregers gemeinsam? Die Antwort heißt exponentielles Wachstum. Was exponentielles Wachstum ist und wie man es mathematisch modellieren kann, lernst du in diesem Video.

Modellierungsaufgabe zum exponentiellen Wachstum

Dazu stellen wir gemeinsam die Funktionsvorschrift einer exponentiellen Wachstumsfunktion auf. Als Grundlage dient uns folgende Textaufgabe: Auf einer Insel werden in einem Jahr vier Hasen ausgesetzt. 18 Monate später werden bereits 16 Hasen gezählt. Wie viele Hasen leben nach 36 Monaten auf der Insel, wenn man annimmt, dass sich die Hasen exponentiell vermehren?

Bei dieser Textaufgabe handelt es sich um eine Modellierungsaufgabe. Dieser Begriff bezeichnet das Verfahren, Fragestellungen aus dem realen Leben mathematisch auszudrücken, um sie dann mit den Hilfe der Mathematik zu lösen.

Am Beispiel der Textaufgabe sollst du nun die Entwicklung der Hasenpopulation mathematisch ausdrücken. Gegeben sind die Anzahl der Hasen zu Beginn - 4 Hasen - und 18 Monate später - 16 Hasen. Die Wachstumsfunktion f beschreibt die Anzahl der Hasen nach x Monaten. Unser Anfangsbestand ist dann f zum Zeitpunkt null gleich 4. Desweiteren ist f zum Zeitpunkt 18 gleich sechzehn.

Gesucht ist die Funktionsvorschrift für f von x. Denn mit Hilfe dieser Funktion kannst du dann monatsgenau vorhersagen, wie sich die Hasenpopulation weiter vermehren wird. In der Textaufgabe wurde dir der wichtige Hinweis gegeben, dass sich die Hasen exponentiell vermehren. Du beginnst mit dem Aufstellen der allgemeinen Funktion für exponentielles Wachstum: f(x) = c mal a hoch x. Wobei c für den Anfangswert und a für den Wachstumsfaktor steht.

Zu zwei Zeitpunkten kennen wir die Anzahl der Hasen auf der Insel. Zum Zeitpunkt t gleich null sind es vier Hasen. Also ist f von 0 gleich c mal a hoch null gleich 4. Daraus ergibt sich unsere erste Gleichung c mal a hoch null gleich 4.

Zum Zeitpunkt t gleich 18 sind es 16 Hasen. Also ist f von 18 gleich c mal a hoch 18 gleich 16. Daraus ergibt sich unsere zweite Gleichung c mal a hoch 18 gleich 16.

Betrachten wir zunächst die erste Gleichung. Ist dir aufgefallen, dass das a mit null potenziert wird? Weißt du welche Besonderheit darin besteht? Jede Zahl mit null potenziert ergibt eins, also ist a hoch 0 gleich 1. Die Gleichung lautet damit 4 gleich c mal eins. c ist also gleich 4. Damit haben wir c, den Anfangswert bestimmt.

Jetzt musst du nur noch den Wachstumsfaktor a bestimmen. Hierfür betrachten wir nun die zweite Gleichung: c mal a hoch 18 gleich 16. Setzen wir als erstes für c 4 ein: 4 mal a hoch 18 = 16. Wenn wir diese Gleichung nach a auflösen, erhalten wir den Wachstumsfaktor.

Wir teilen hierfür durch vier und erhalten a hoch 18 gleich 4. Du ziehst nun die 18. Wurzel auf beiden Seiten der Gleichung und erhältst a ist gleich plus minus die 18. Wurzel aus 4. Das rechnest du mit dem Taschenrechner aus. Der Wachstumsfaktor a beträgt ungefähr plus minus 1,08.

Da wir ein positives Wachstum haben, da sich die Hasenpopuation vermehrt, müssen wir die negative Lösung nicht berücksichtigen. Somit gilt: a gleich 1,08. Die Funktionsvorschrift der Exponentialfunktion, die die Entwicklung der Hasenpopuation beschreibt, lautet: f(x) ist gleich 4 mal 1,08 hoch x.

Mit Hilfe dieser Gleichung kannst du nun monatsgenau vorhersagen, wie viele Hasen auf der Insel leben werden. Zum Beispiel nach 3 Jahren, also 36 Monaten. Du setzt für x 36 ein und rechnest den Funktionswert aus. f von 36 ist gleich vier mal 1,08 hoch 36. Das sind rund 64. Nach 36 Monaten würden also 64 Hasen auf der Insel leben.

Schluss

Wie du eben gesehen hast, kann eine Funktionsvorschrift zu gegebenen Funktionswerten in wenigen Schritten hergeleitet werden. Auf diese Weise können reale Prozesse mathematisch modelliert werden. Durch eine solche Modellierung hast du ein wichtiges mathematisches Werkzeug zur Hand, mit dem man Entwicklungen vorraussagen kann. Das ist besonders in der Wirtschaft wichtig. Aber auch in anderen Bereichen wie beispielsweise der Biologie oder Soziologie.

Informationen zum Video
1 Kommentar
  1. Default

    Vielen Dank! Das ist das erste Mal, dass ich dieses Thema verstanden habe, dank eurem Video. Bitte, Bitte macht mehr Videos zu diesem Thema.

    Von Visagebybambi, vor mehr als 2 Jahren