Textversion des Videos

Transkript Dezimalbrüche – Addieren und Subtrahieren (Übung 1)

Hallo und herzlich willkommen. In diesem Video üben wir das Addieren und Subtrahieren von Dezimalzahlen. Wir brauchen das im Alltag ständig, denn oft, wenn etwas zu addieren oder subtrahieren ist, haben wir es nicht mit ganzen Zahlen, sondern mit Dezimalzahlen zu tun.

Beim Einkaufen, beim Sport, beim Rechnen mit Längen, Zeiten, Gewichten usw. – überall kommen Kommazahlen vor. Deshalb üben wir das.

  • Zunächst frischen wir kurz auf, was Dezimalzahlen sind.
  • Dann rufen wir in Erinnerung, wie die Addition und Subtraktion mit Dezimalzahlen funktionieren.
  • Und dann üben wir.

Was sind Dezimalzahlen?

Zunächst also eine kurze Wiederholung: Was sind Dezimalzahlen? Dezimalzahlen sind eine andere Schreibweise für ganz spezielle Brüche, nämlich Brüche mit dem Nenner 10 oder 100 oder 1000 usw. Es sind also keine neuen Zahlen, sondern Brüche in anderer Form. Zum Beispiel ist 3 Zehntel = 0,3, 17 Hundertstel = 0,17 usw.

Jede Stelle nach dem Komma hat eine genau festgelegte Bedeutung, genau wie jede Stelle vor dem Komma. Vor dem Komma stehen die Einer, Zehner, Hunderter usw., nach dem Komma stehen Zehntel, Hundertstel, Tausendstel usw.

Addition und Subtraktion

Damit sind wir schon beim Addieren und Subtrahieren, denn das erfolgt genau wie bei den ganzen Zahlen Stelle für Stelle. Das bedeutet: Willst du zwei Dezimalzahlen addieren oder subtrahieren, musst du sie genau untereinander schreiben, zum Beispiel 14,27 plus 11,89.

Die Zehner stehen untereinander, ebenso die Einer, die Zehntel und die Hundertstel. Damit stehen auch die beiden Kommas untereinander. Dann addierst oder subtrahierst du die Zahlen, wie du das von den ganzen Zahlen kennst, also Stelle für Stelle und mit Übertrag.

Du fängst ganz rechts an, hier also bei den Hundertsteln:

  • 7 plus 9 = 16, also 6 notieren und 1 als Übertrag.
  • 2 plus 8 plus 1 gleich 11, also 1 notieren und 1 als Übertrag.
  • Dann vor dem Komma 4 plus 1 plus 1 = 6 und 1 plus 1 gleich 2.

Das Komma kommt auch beim Ergebnis an dieselbe Stelle wie oben – zwischen Einer und Zehntel. Das Ergebnis lautet demnach 26,16.

Das A und O ist: Die entsprechenden Stellen d.h. Ziffern mit gleichen Stellenwert und das Komma müssen untereinander stehen. Dann kann eigentlich nichts schiefgehen.

Übungsaufgabe 1

Und nun üben wir das. Erste Aufgabe: 22,317 plus 6,888.

Der erste Schritt ist: Zahlen stellengenau untereinander schreiben, d.h. Kommas untereinander: 22,317 plus 6,888. Der Platz unter der 2 bleibt frei, weil der zweite Summand keine Ziffer an der Zehnerstelle hat! Im zweiten Schritt kommt die eigentlich Rechnung, rechts angefangen bei den Tausendsteln:

  • 8 plus 7 gleich 15, d.h. wir schreiben 5 und notieren 1 in den Übertrag.
  • dann 1 plus 8 plus 1 aus dem Übertrag = 10, also 0 und Übertrag 1.
  • Die Zehntel ergeben 3 plus 8 plus 1 aus dem Übertrag = 12,
  • die Einer dann 2 plus 6 plus Übertrag 1 = 9 und die Zehner 2.

Das Ergebnis lautet 29 Komma 2 0 5.

Übungsaufgabe 2

Zweite Aufgabe: 4,7190 minus 2,6134.

Zunächst die Zahlen Stelle für Stelle untereinander schreiben: 4,7190 minus 2,6134. Dann von rechts nach links rechnen, angefangen bei den Zehntausendsteln:

  • Die 0 wird zur 10 ergänzt, also 10 minus 4 = 6 und 1 im Übertrag.
  • Weiter geht’s mit 9 minus 4 = 5, 1 minus 1 = 0 und 7 minus 6 = 1.
  • Zuletzt subtrahieren wir die Einer: 4 minus 2 gleich 2.

Das Komma kommt an die gleiche Stelle wie oben, das Ergebnis ist also 2,1056.

Übungsaufgabe 3

Dritte Aufgabe: 5 plus 0,74.

5 ist doch gar keine Dezimalzahl? Erstens macht das nichts, und zweitens stimmt das nicht, denn 5 können wir schreiben als 5,00. Wir könnten noch viel mehr Nullen anhängen, denn dadurch ändert sich der Wert einer Dezimalzahl nicht.

Also schreiben wir untereinander: 5,00 + 0,74. Die Addition ergibt bei den Hundersteln 4, bei den Zehnteln 7 und bei den Einern 5. Das Ergebnis lautet 5,74.

Übungsaufgabe 4: Textaufgabe

Und jetzt noch eine Textaufgabe: Frau Meier möchte ihr rechteckiges Hasengehege neu einzäunen. Sie nimmt ein Metermaß und misst als Länge 6 Meter und 40 cm und als Breite 4 Meter und 30 cm. Das alte Türchen kann sie wieder verwenden, es ist einen Meter und 10 cm breit. Wie lang wird ihr Zaun?

Machen wir zunächst eine Skizze und tragen die Länge 6 m und 40 cm als Zahl ohne Maßeinheit “6,4 Meter” ein, die Breite 4 Meter und 30 cm als “4,3 Meter” und die Breite der Tür mit 1 Meter und 10cm als “1,1 Meter”.

Wir ignorieren zunächst die Tür und rechnen den gesamten Umfang aus, also zwei Mal die Länge plus 2 mal die Breite. Unsere Rechnung sieht dann also so aus: 6,4 + 6,4 + 4,3 + 4,3.

Ich habe das direkt untereinander geschrieben. Jetzt können wir es nämlich zusammenfassen:

  • Die Summe der Zehntelstellen 4 + 4+ 3+3 ergibt 14. Wir notieren unten eine 4 und eine eins im Übertrag.
  • Die Summer der Einer ist dann 6 plus 6 = 12 plus 4 = 16 plus 4 = 20 plus 1 = 21.

Jetzt noch das Komma an die richtige Stelle: 21,4 ist das Ergebnis. Der Gesamtumfang entspricht also 21,4 Meter.

Davon ziehen wir nun noch die Türbreite ab. Wir rechnen 21,4 minus 1,1. Das ergibt von rechts: 4 − 1 = 3, 1 − 1 = 0 und 2 − 0 = 2. Mit dem Komma an der richtigen Stelle lautet das Ergebnis 20,3. Frau Meier benötigt demnach 20 Meter und 30 cm Zaun.

So, das war es nun auch schön. Wir haben drei kleine Übungen und eine Textaufgabe zur Addition und Subtraktion von Dezimalzahlen gerechnet. Das reicht für dieses Video. Wenn du möchtest, dann schau dir doch gleich das nächste Video an. Tschüss!

Informationen zum Video
9 Kommentare
  1. Default

    super fragen

    Von Minhee Mayer, vor 7 Monaten
  2. Default

    Danke, war sehr hilfreich .

    Von Kaiser1073, vor 8 Monaten
  3. Default

    thanks a lot!!!

    Von Lara Bliestle, vor 9 Monaten
  4. Default

    thanks a lot!!!

    Von Lara Bliestle, vor 9 Monaten
  5. Default

    Gutes Video!War sehr hilfreich

    Von Jwseo2002, vor mehr als einem Jahr
  1. Image

    Gutes Video!

    Von Black Angel, vor fast 2 Jahren
  2. Image

    SEHR HILFREICH DANKE :)

    Von Murat46, vor fast 2 Jahren
  3. Default

    Danke hat mir sehr geholfen :-)

    Von Antjekoszarek, vor fast 2 Jahren
  4. Default

    danke hat mir geholfen
    lg kv

    Von Karan V, vor mehr als 2 Jahren
Mehr Kommentare