Textversion des Videos

Transkript Satz von Hess – Berechnung der Reaktionsenthalpie

Hallo und herzlich willkommen. Das heutige Video trägt den Titel "Der Satz von Hess". Oder anders formuliert: Es geht um die Berechnung von Reaktionsenthalpien. Nach dem Video weißt du dann, was dieser Satz von Hess besagt und wie man mit seiner Hilfe Reaktionsenthalpien berechnen kann. Du solltest an diesem Punkt allerdings bereits wissen: 1. was eine chemische Reaktion überhaupt ist und 2. was man unter dem Begriff "Enthalpie" versteht. Vielleicht habt ihr irgendwo ja schon mal diesen Satz gehört: Enthalpie ist eine Zustandsgröße. Die Frage ist allerdings, was bedeutet das, was ist überhaupt eine Zustandsgröße? Nun ja, ich versuche das Mal anhand eines einfachen Beispiels zu erklären. Stellt euch vor, ihr steht am Morgen zu Hause auf und frühstückt da. Dann, weil schönes Wetter ist, geht ihr ein bisschen durch den Wald und dann fällt euch ein, ach es wäre doch schön, noch ein paar Runden im Schwimmbad zu drehen, also geht ihr noch ins Schwimmbad. Und erst danach geht ihr zu eurer Arbeit. Der Anfangspunkt eurer Reise ist euer Zuhause und der Endpunkt ist der Arbeitsplatz. Eure Reise kann man in 3 Teilstücke unterteilen. Einmal das Teilstück A, von Zuhause in den Wald, dann das Teilstück B, vom Wald zum Schwimmbad und dann das Teilstück C, vom Schwimmbad zur Arbeit. Ihr hättet theoretisch auch direkt von Zuhause zur Arbeit gehen können und hättet das wahrscheinlich auch bei schlechterem Wetter so gemacht. Tatsächlich ist das auch gar nicht so wichtig, denn in unserem Beispiel ist der Ort die Zustandsgröße. Das heißt, uns interessiert nur der Anfangszustand und der Endzustand. Was dazwischen passiert ist, ist völlig gleichgültig. Was wir aber sagen können, ist, dass die Wege A+B+C zusammengenommen dasselbe Ergebnis gebracht haben, wie wenn ihr nur den Weg D genommen hättet. Und damit wäre das Wesen einer Zustandsgröße auch schon weitgehend erklärt. Verändert man eine Zustandsgröße, und so was nennt man eine Zustandsänderung, dann zählen nur Anfangs- und Endpunkt der Änderung. Der Weg, auf welchem die Änderung erfolgt, ist weitgehend egal. Zumindest wie man so schön sagt, aus thermodynamischer Sicht. Wahrscheinlich habt ihr schon gehört, dass Enthalpie Energie sei. Das ist zwar nicht falsch, aber viel zu ungenau. Streng genommen sollte man sagen, die Enthalpie ist der Energiegehalt eines Reaktionsgemisches oder auch eines Stoffes. Die Reaktionsenthalpie ist die Änderung der Enthalpie, also des Energiegehalts des Reaktionsgemisches. Darum kürzt man die Reaktionsenthalpie auch mit dem Kürzel ΔH ab. Dieses große Dreieck ist das griechische Delta. Und dieses Δ steht für den Begriff Differenz oder Unterschied oder eben Änderung. Und wenn man diese gerade eben erklärten Dinge verstanden hat, dann wird man auch keine Schwierigkeiten haben, den Satz von Hess zu verstehen. Er besagt nämlich: Die Enthalpieänderung zwischen zwei Zuständen ist unabhängig vom Reaktionsweg. Oder anders formuliert, etwas komplizierter, könnte er lauten: Betrachtet man zwei unterschiedliche Reaktionsabfolgen mit gleichem Anfangs- und Endzustand, so haben sie dieselbe Reaktionsenthalpie. Schauen wir uns das Mal anhand eines Beispiels an. Gegeben seien 3 Reaktionen. Die erste lautet: Kohlenstoff plus Sauerstoff ergibt Kohlendioxid. Die Zweite lautet Kohlenstoff plus Sauerstoff ergibt Kohlenmonoxid und 1 Sauerstoffatom bleibt übrig. Und die dritte Reaktion lautet Kohlenmonoxid plus 1 Sauerstoffatom reagieren zu Kohlendioxid. Man kann diese Reaktionsabfolge auch als ein Dreieck von 3 verschiedenen Zuständen skizzieren. Zustand 1 wäre Kohlenstoff plus Sauerstoff, Zustand 2 wäre das Kohlenmonoxid mit dem Sauerstoffatom und Zustand 3 wäre das Kohlendioxid. Diese 3 Zustände kann man nun durch Pfeile miteinander verbinden, wobei diese Pfeile die 3 oben dargestellten Reaktionen symbolisieren. Die Reaktion selbst ist sozusagen die Zustandsänderung. Reaktion A wäre die Reaktion von Kohlenstoff mit dem Sauerstoff direkt zum Kohlendioxid. Reaktion B wäre Kohlenstoff plus Sauerstoff werden zu Kohlenmonoxid plus Sauerstoffatom, Reaktion C wäre Kohlenmonoxid plus Sauerstoff ergeben Kohlendioxid. Erinnern wir uns an dieser Stelle noch einmal an das Beispiel mit dem Ort als Zustandsgröße. Gehen wir erst den Weg B und dann den Weg C, dann ist das ja exakt dasselbe, als wenn wir gleich den Weg A genommen hätten. Man kann also schreiben: A=B+C. Bezogen auf unsere Enthalpien würde das bedeuten: Die Reaktionsenthalpie der Reaktion B plus die Reaktionsenthalpie der Reaktion C ist gleich die Reaktionsenthalpie der Reaktion A. Die Reaktionsenthalpien dieser 3 Reaktionen, die hier aufgeführt sind, wurden tatsächlich auch schon experimentell bestimmt. Sie haben die Werte: -393,8 Kilojoule für Reaktion A, -110,6 Kilojoule für Reaktion B und -283,2 Kilojoule für Reaktion C. Wie man hier übrigens sieht, haben alle Reaktionsenthalpien negative Vorzeichen, was bedeutet, sie sind allesamt exotherm. Setzen wir diese Reaktionsenthalpien nun in unsere Gleichung A=B+C ein, dann sieht man, dass es tatsächlich stimmt. -393,8 kJ = -110,6 kJ + -283,2 kJ. Passt. Man kann diesen Sachverhalt auch anhand eines sogenannten Energiediagramms darstellen. Auf der y-Achse wird die Energie bzw. die Enthalpie, das heißt, der Energiegehalt der Stoffe dargestellt, und die x-Achse ist so etwas wie der Reaktionsverlauf. Den höchsten Energiegehalt hätten in dieser Darstellung die Ausgangsstoffe Kohlenstoff plus Sauerstoff. Einen mittleren Energiegehalt hätte das Kohlenmonoxid mit dem Sauerstoff und den niedrigsten würde das Kohlendioxid aufweisen. Auf dem Weg von der obersten Stufe zur 2. Stufe werden 110,6 Kilojoule abgegeben, deshalb das Minuszeichen, und auf dem Weg von der 2. zur 3. Stufe werden 283,2 Kilojoule abgegeben. Unterm Strich ist das so, als wäre diese Reaktion in einem Schritt durchgeführt worden und dabei auf ein Mal 393,8 Kilojoule abgeben worden. An dieser Stelle die berechtigte Frage wie immer: Wozu das Ganze überhaupt? Nun, in der Praxis sieht es so aus, dass man Reaktionsenthalpien nicht immer direkt experimentell bestimmen kann, sondern dass man sie berechnen muss. Die eben dargestellten Zusammenhänge bilden so etwas wie die Grundlage für diese Berechnungen. Man kann z. B. sagen: Kenne ich die Reaktionsenthalpien sämtlicher Teilschritte einer Reaktion bis auf eine, so kann ich die fehlende Reaktionsenthalpie aus den anderen berechnen. Das lässt sich vielleicht am besten anhand eines ganz abstrakten Beispiels erklären. Sagen wir mal, wir haben 4 Zustände, die wir hier Z1, Z2, Z3 und Z4 nennen wollen. Diese 4 Zustände können auf den hier skizzierten Wegen A, B, C und X ineinander überführt werden. Diese Wege sind in unserem Falle natürlich chemische Reaktionen, wobei die blauen Wege, also A und B und C, Reaktionen sind, deren Reaktionsenthalpien uns bekannt sind. Reaktion X ist jene Reaktion, deren Reaktionsenthalpie wir berechnen möchten. Unseren Betrachtungen von vorhin folgend, können wir jetzt aber eine Gleichung aufstellen. Wir können sagen, die Reaktionsenthalpie der Reaktion A plus die Reaktionsenthalpie der Reaktion B ist genauso groß wie die Reaktionsenthalpie der Reaktion C plus die Reaktionsenthalpie der Reaktion X. Nun können wir diese Gleichung nach ΔHX auflösen und erhalten den Ausdruck: ΔHX ist gleich ΔHA+ΔHB-ΔHC. Konkrete Berechnungen möchte ich an dieser Stelle jetzt nicht durchführen, aber darauf hinweisen, dass es ein Übungsvideo zu genau diesem Thema gibt. So, und damit wären wir auch schon am Ende dieses Videos angelangt. Wir haben darin gelernt, was der Satz von Hess besagt und wie man mit seiner Hilfe Reaktionsenthalpien berechnen kann. Danke fürs Zuschauen, tschüss und bis zum nächsten Mal.

Informationen zum Video
3 Kommentare
  1. Default

    danke danke danke! hab 15 NP bekommen für einen Vortrag über die Enthalpie (und dem Satz von Hess)!
    Hat wirklich super geholfen

    Von Kanutouren, vor etwa 2 Jahren
  2. Default

    omg perfekt erklärt....!!!!

    Von Hana 1, vor mehr als 2 Jahren
  3. Default

    sehr hilfreich , danke sehr

    Von Dr.Abdullah, vor etwa 3 Jahren