Textversion des Videos

Transkript Reaktionsmechanismen mit Umlagerungen

Guten Tag und herzlich willkommen. In diesem Video geht es um Umlagerungen. Der Film gehört zur Reihe "Reaktionsmechanismen". An Vorkenntnissen solltet ihr die organische Chemie bis Alkene und Alkohole beherrschen. Mein Ziel ist es, euch mit Umlagerungen am Beispiel kationischer Reaktionen bekannt zu machen. Den Film habe ich in 6 Abschnitte unterteilt: 1. Umlagerungen - Exoten der Chemie? 2. Warum lernen wir das? 3. Stabilere und weniger stabile Ionen 4. Ionen lagern um 5. Gibt es nur kationische Umlagerungen? und 6. Zusammenfassung.

  1. Umlagerungen - Exoten der Chemie? Was haben die folgenden Herren gemeinsam: Beckmann, Claisen, Curtius, Hofmann, Wagner. Nein, ihre Kinder spielen nicht alle in der deutschen Fußballnationalmannschaft. Diese Herren sind alle Entdecker von Reaktionen, die mit Umlagerungen verbunden sind. Heute kennt man Dutzende und aberdutzende von Umlagerungen, vielleicht sind es schon weit über 100. Bei Umlagerungen erfahren die Strukturelemente von organischen Zwischenstufen Veränderungen. Es kommt sozusagen zu einer Verschiebung dieser Strukturelemente gegeneinander. Nehmen wir z. B. dieses Strukturelement, bestehend aus Kohlenstoff, Stickstoff, Sauerstoff und Wasserstoff und tragen die entsprechenden Bindungen untereinander ein. Wir haben es hier mit einem Oxim zu tun. Dieses kann sich unter geeigneten Bedingungen umlagern. Bindungen wurden gebrochen, neue sind entstanden, das Produkt heißt Amid. Formulieren wir einmal diese Umlagerung als kurze Reaktionsgleichung. So schaut sie aus, eine neue Verbindung ist entstanden. Aus dem Oxim hat sich ein Amid gebildet. Diese berühmte Umlagerung bezeichnet man als Beckmann-Umlagerung. Schön und gut.

Aber 2. Warum lernen wir das? Nehmen wir ein Beispiel. Benzol soll mit n-Propylbromid in Anwesenheit eines sauren Katalysators, Aluminiumbromid, reagieren. Einige werden es sicher wissen, dass es sich hier um eine Friedel-Crafts-Alkylierung handelt. Wir wollen nämlich n-Propylbenzol herstellen, aber n-Propylbenzol erhalten wir nicht. Stattdessen bekommen wir nur Isopropylbenzol. Offensichtlich hat hier eine Umlagerung stattgefunden. Und das wollen wir nicht einfach nur zur Kenntnis nehmen, wir wollen das verstehen.

  1. Stabilere und weniger stabile Ionen In der organischen Chemie entstehen bei chemischen Reaktionen häufig Ionen. Und zwar positiv geladene Ionen, Kationen. Positiv geladene Ionen nennt man Carbokationen. Die einfachen Ionen, die von den Alkanen abgeleitet sind, bezeichnet man als Carbeniumionen. Ganz links sehen wir das Methylkation, daneben ist das Ethylkation. Man nennt es ein primäres Ion. Das prop-2-yl-Kation daneben nennt man sekundäres Ion. Das Ion ganz rechts heißt tertiär-Butyl-Ion, es ist ein tertiäres Ion. Primär, sekundär und tertiär bedeutet jeweils die Zahl der Kohlenstoffatome am Kohlenstoffatom, das die positive Ladung trägt. Also entsprechend 1, 2, 3 und das Methylkation 0. Interessant im Hinblick auf unsere Umlagerung ist, dass die Stabilität der Ionen von links nach rechts zunimmt. Betrachten wir nun noch einmal die Stabilität, indem wir die molekularen Strukturen in Formelschreibweise darstellen. Wir beginnen mit dem Methylkation. Stabiler als das Methylkation ist ein primäres Carbeniumion. Noch größere Stabilität weist ein sekundäres Carbeniumion auf. Ein tertiäres Carbeniumion ist schließlich am stabilsten. Die Stabilität ändert sich in der Folge. Methyl, primär, sekundär, tertiär. Die relative Stabilität der Ionen wird durch die Zahl der Methylgruppen, die sich am Kohlenstoffatom mit der Ladung befinden, hervorgerufen. Das Methylkation hat dort keine Methylgruppe. Das primäre Methylkation hat dort 1 Ethylgruppe. Das sekundäre prop-2-yl-Kation hat dort 2 Methylgruppen. Das tertiäre Butylkation schließlich enthält 3 Methylgruppen. Warum ist das so? Methylgruppen haben die Fähigkeit, Elektronen in das Molekül hineinzuschieben. Je mehr Methylgruppen sich an der positiven Ladung befinden, umso mehr können sie Elektronen hineinschieben. Das Ion wird stabiler. Wir stellen fest: Methylgruppen am Kohlenstoffatom mit der Ladung stabilisieren das Carbeniumion. Ähnlich wirken alle Alkylgruppen.

  2. Ionen lagern um Nehmen wir zunächst ein n-Propylkation. Das Wasserstoffteilchen aus der Mitte verschiebt sich in Richtung des Kohlenstoffatoms mit der positiven Ladung nach rechts. Ein Hydridteilchen wandert und die positive Ladung liegt nun irgendwie zwischen dem Kohlenstoffatom ganz rechts und in der Mitte. Aus dem n-Propylkation ist ein sekundär-Propylkation entstanden. Wir sprechen hier von einer 1,2-Hydridverschiebung. Hydrid wandert zum Nachbarkohlenstoffatom, von 1 zu 2. Treibende Kraft ist die höhere Stabilität des sekundär-Propylkations im Vergleich zum n-Propylkation. Neben der 1,2-Hydridverschiebung gibt es auch die 1,2-Alkylverschiebung. Nehmen wir an, es hat sich zunächst dieses Carbeniumion gebildet. Wir wissen, dass es sich um ein primäres Ion handelt. Der blau markierte Alkylrest beginnt nun zu wandern. Zusammen mit den beiden Bindungselektronen bewegt er sich zum Kohlenstoffatom mit der positiven Ladung. Die positive Ladung ist dann irgendwie angeordnet zwischen den beiden beteiligten Kohlenstoffatomen rechts und in der Mitte. Ein tertiäres Carbeniumion entsteht. Es kommt zur Stabilisierung, denn wir wissen, dass tertiär stabiler als primär ist.  Nun möchte ich noch 2 Beispiele für praktische Reaktionen anführen. n-Butanol wird protoniert. In der 2. Stufe wird Wasser abgespalten, es entsteht ein primäres Carbeniumion. Aus diesem entsteht durch 1,2-Hydridverschiebung ein sekundäres Carbeniumion. Beide Carbeniumionen, primär und sekundär, können nun ein Wasserstoffion abspalten und ein entsprechendes Alken bilden. Es entsteht fast nur das Alken unten, aus dem sekundären Carbeniumion, das Alken oben aus dem primären Carbeniumion entsteht praktisch nicht. Ein 2. Beispiel: Dieser Alkohol wird wie im Beispiel 1 protoniert und anschließend wird Wasser abgespalten. Es entsteht ein sekundäres Carbeniumion. Durch 1,3-Alkylverschiebung, die Methylgruppe wandert, entsteht ein tertiäres Carbeniumion. Und da es stabiler ist, als das sekundäre Carbeniumion, wird von ihm ein Wasserstoffion abgespalten. Es entsteht das Alken unten rechts.

  3. Gibt es nur kationische Umlagerungen? Nehmen wir z. B. die Radikale. Das sind Teilchen, die nicht geladen sind, aber ein ungepaartes Elektron enthalten. Auch hier haben wir folgende Reihenfolge: Methylradikal, primäres Radikal, sekundäres Radikal und tertiäres Radikal. Die 4 Radikale unterscheiden sich durch die Anzahl der Methylgruppen am Kohlenstoffatom, das das freie Radikal trägt. Nämlich 0, 1, 2 und 3. Die Stabilität steigt von links nach rechts. Erklären kann man das mit dem sogenannten Hyperkonjugationseffekt, auf den ich an dieser Stelle aber nicht eingehen möchte. Natürlich kann man auch hier mit Umlagerungen rechnen und darum soll die rhetorische Frage ganz klar verneint werden.

  4. Zusammenfassung Bei Umlagerungen verschieben sich Atome bzw. Atomgruppen innerhalb des Moleküls, so wie hier z. B. bei der Beckmann-Umlagerung. Eine wichtige Rolle bei Umlagerungen spielt die relative Stabilität von Carbeniumionen. Das Methylkation ist weniger stabil als ein primäres Carbeniumion, dieses wiederum ist weniger stabil als ein sekundäres Carbeniumion. Am stabilsten sind die tertiären Carbeniumionen. Wir merken uns die Reihenfolge: Methyl, primär, sekundär, tertiär. Carbeniumionen wandeln sich durch 1,2-Hydrid- und durch 1,2-Alkylverschiebungen in die stabileren Ionen um. Außer kationischen Umlagerungen sind auch andere möglich, z. B. unter Beteiligung von Radikalen.

Ich danke für die Aufmerksamkeit. Alles Gute, auf Wiedersehen.

Informationen zum Video