Advent, Advent, 1 Monat weihnachtliche Laufzeit geschenkt.

Nicht bis zur Bescherung warten, Aktion nur gültig bis zum 18.12.2016!

Textversion des Videos

Transkript Nitrierung von Benzol

Hallo liebe Chemie Interessierte, hier ist wieder André. Ich begrüße euch zum Video, Nitrierung von Benzol. Was bedeutet Nitrierung? Bei der Nitrierung handelt es sich um die Einführung der sogenannten Nitrogruppe, NO2. Dass bedeutet, dass eines der Wasserstoffatome des Benzolmoleküls gegen diese Nitrogruppe ausgetauscht wird. Betrachten wir zunächst das Benzolmolekül als reaktives Teilchen. Das Benzolmolekül kann sowohl mit der normalen Strukturformel und delokalisiertem Pi-Elektron als auch als Hohlstabmodel, oder Kalottmodel dargestellt werden. Für uns ist die Variante des regelmäßigen Sechsrings mit eingezeichnetem Kreis am geeignetsten. Der Sechsring symbolisiert die 6 delokalisierten Pi-Elektronen. Das bedeutet aber, dass das Benzolmolekül von elektrophilen Verbindungen angegriffen wird. Wir benötigen daher ein geeignetes Elektrophil, NO2+. Wo finden wir nun eine Quelle für unser Elektrophil, das Ion NO2+, das sogenannte Nitronium-Ion. Die erste naheliegende Idee wäre dafür das Molekül der Salpetersäure, HNO3, zu benutzen. Aber leider findet die Reaktion zum Nitronium-Ion und Hydroxyd-Ion nicht statt. Es genügt aber die Reaktionsbedingungen etwas zu variieren, indem wir die Salpetersäure mit konzentrierter Schwefelsäure vermischen. Das Ionen-Gemisch liefert unter anderem auch die gewünschten Nitronium-Ionen. Daher wird ein Gemisch aus konzentrierter Salpetersäure und konzentrierter Schwefelsäure, auch als Nitriergemisch bezeichnet. Nun können wir zur Attacke blasen und den elektrophilen Angriff starten. Das positiv geladene Nitronium-Ion vereinigt sich mit dem Bi-Elektronensechstett des Benzolringes, zum sogenannten Pi-Komplex. Bei diesem Pi-Komplex sind im Wesentlichen alle 6 Pi-Elektronen des Benzols noch erhalten. Es findet nur ein gewisser Ladungsaustausch statt. Die Bildung des Sigma-Komplexes ist das zentrale Stadium der Nitrierung von Benzol. Das Nitronium-Ion, das im Pi-Komplex über alle 6 frei beweglichen Elektronen koordiniert ist, befestigt sich nun an einem der 6 Kohlenstoffatome. Es entsteht der sogenannte Sigma-Komplex. Bei diesem Komplex ist die positive Ladung, über die 5 Kohlenstoffatome, die nicht mit dem NO2 verbunden sind, delokalisiert. Das gleiche gilt für die beiden Pi-Elektronenpaare. Dieser Situation wird durch 3 mesomere Grenzstrukturen Rechnung getragen. Die positive Ladung und die frei beweglichen Elektronen sind über 5 Kohlenstoffatome delokalisiert. Die Hybridisierung am Kohlenstoffatom, das mit der Nitrogruppe verbunden ist, ist SP3.  Der finale Schritt der Nitrierung des Benzols ist die Abspaltung des Protons. Die entstandene chemische Verbindung heißt Nitrobenzol. In ihr sind alle Kohlenstoffatome, SP2, hybridisiert. Das Proton geht wieder an seinen Ursprungsort zurück. Es geht ein in das Gleichgewicht zwischen Proton, Hydrogensulfat-Ion, Oxonium-Ion auf der einen Seite und Schwefelsäure und Wasser auf der anderen Seite. Formulieren wir nun die Bruttoreaktion für die Nitrierung von Benzol. Es ist nicht sinnvoll diese Reaktion stöchiometrisch zu formulieren. Wir schreiben nur Ausgangsstoff und Reaktionsprodukt auf und formulieren das Nitriergemisch über bzw. unter dem Reaktionspfeil.  Die Nitrierung von Benzol ist eine typische elektrophile Substitution am Kern am Ring. Und schon wieder sind einige Minuten angespannten Arbeitens vorbei. Ich bedanke mich für eure Aufmerksamkeit und wünsche euch viel Erfolg. Vielleicht hören und sehen wir uns bald schon einmal wieder. Tschüss  

Informationen zum Video