Textversion des Videos

Transkript Nernst-Verteilungssatz

Guten Tag und herzlich willkommen. In diesem Video geht es um das Nernst-Verteilungsgesetz. Das ist ein weiterer Film aus der Reihe "Heterogene Gleichgewichte". Es wäre wünschenswert, wenn ihr euch den Film "gesättigte Lösungen und Löslichkeit" bereits angesehen habt. Ich möchte in diesem Video den Nernst-Verteilungssatz vorstellen und Anwendungen in der Medizin und im Chemielabor präsentieren. Der Film ist in 3 Abschnitte unterteilt: 1. Das Gesetz 2. Verteilungsvorgänge im Körper 3. Anwendung im Labor 1. Das Gesetz. Der Nernstsche Verteilungssatz wurde von Walter Nernst im Jahre 1892 gefunden. Nehmen wir an, wir haben ein Gefäß. In dem Gefäß befinden sich 2 Flüssigkeiten, I und II, die nicht miteinander mischbar sind und daher die Phasen 1 und 2 ausbilden. Zwischen den beiden Phasen treffen wir die Phasengrenzschicht an. Wir notieren: Beide Flüssigkeiten sind nicht miteinander mischbar. Wenn die Mischbarkeit schlecht ist, ist es auch möglich. Möglich sind die Systeme Hexan und Wasser oder Chloroform und Wasser oder Ether und Wasser. Im Fall von Chloroform wechseln die Ober- und Unterphase wegen der großen Dichte des Chloroforms ihre Plätze. A sei ein Stoff, der sowohl in I als auch in II lösbar sei. Dabei findet eine Verteilung von A zwischen beiden Lösungsmitteln statt. Wegen der fehlenden Mischbarkeit bzw. der geringen Mischbarkeit von I und II müssen noch 2 weitere Bedingungen erfüllt werden: A muss löslich sowohl in I als auch in II sein - aber davon sind wir ja schließlich ausgegangen - und schließlich als Drittes ganz wichtig: Die Menge von A ist viel geringer als die Menge von I und ebenso als die Menge von II. Bei Konstantheit von Druck und Temperatur können wir nun den Nernstschen Verteilungssatz formulieren. Die Konzentration von A im Lösungsmittel I dividiert durch die Konzentration von A im Lösungsmittel II nimmt einen konstanten Wert an. Dieser wird mit dem Symbol K versehen. Das bedeutet, dass der Quotient aus Ober- und Unterphase konstant ist. K nennt man die Verteilungskonstante. 2. Verteilungsprozesse im Körper. Damit ein Arzneimittel im menschlichen Körper wirken kann, sind einige Voraussetzungen notwendig. Das Arzneimittel muss die Blut-Hirn-Schranke überwinden. Das bedeutet, dass die Moleküle des Arzneimittels sowohl lipophil als auch lipophob sein müssen. Narkosemittel sind in der Lage, den Bereich zwischen neuronalen Membranen und dem Liquorraum im Gehirn zu überwinden. Dafür ist ein geeigneter Verteilungskoeffizient K notwendig. Ein anderes Beispiel: Leider werden in die Muttermilch mitunter Chlorkohlenwasserstoffe wie DDT oder Lindan eingeschleppt. Da beide Verbindungen lipophob sind, ist der Verteilungskoeffizient zugunsten des Fettgewebes sehr hoch und im Ergebnis unserer Umweltsünden hat er es auszubaden. 3. Anwendung im Labor. Im Prozess der chemischen Synthese werden häufig Extraktionen mit solchen Extraktionstrichtern durchgeführt. Solche Trichter verwendet man bei der manuellen Extraktion einer chemischen Verbindung aus einer wässrigen Lösung. Den Prozess bezeichnet man auch als Ausschütteln oder Ausethern. Nehmen wir an, der Verteilungskoeffizient K sei 3 zugunsten des Ethers. Nach 6 Extraktionen haben wir 36, das heißt also 729 von einem Anteil ausgeethert. Die Restmenge an Substanz beträgt etwa 0.1% der ursprünglichen Menge, das heißt, wir können mit dem Ausethern aufhören. Grundsätzlich gelten für das Ausschütteln folgende Regeln: Wenig Lösungsmittel verwenden, dafür häufiger. Aber nach 5 bis 7 Mal sollte die Hauptmenge an Substanz gewonnen sein. Was ist aber zu tun, wenn der Verteilungskoeffizient K nur wenig größer 1 ist? Gibt es dann keinen Ausweg? Der Ausweg heißt hier Soxhlet-Apparatur. Schaut sie euch einmal an. Ist doch lustig, nicht? Diese Apparatur funktioniert nur dann, wenn die Dichte des Lösungsmittels, mit dem man extrahiert, geringer ist als die Dichte des Lösungsmittels des Wassers. Und das extrahiert und extrahiert und extrahiert... Ich danke für die Aufmerksamkeit. Alles Gute, auf Wiedersehen.

Informationen zum Video
1 Kommentar
  1. Default

    wie kann ich die verteilung ausrechnen, wenn die flüssigleiten 1 und 2 nicht im verhältniss 1:1 stehen?

    Von Darian P., vor fast 3 Jahren