Textversion des Videos

Transkript Mehrwertige Alkohole und Phenole

Guten Tag und herzlich willkommen! In diesem Video geht es um "Mehrwertige Alkohole und Phenole". Gliederung: 1. Erwartete Eigenschaften 2. Ethylenglycol und Glycerin 3. Polyalkohole 4. Zweiwertige Phenole 5. Zusammenfassung   Wir haben bisher Alkohole und Phenole betrachtet, die jeweils nur über eine funktionelle Gruppe OH verfügen. Jetzt wollen wir solche chemischen Verbindungen betrachten, die mehrere funktionelle Gruppen OH besitzen. Wir haben gelernt, dass man diese Verbindungen als Abkömmlinge des Wassers betrachten kann. Damit sind sie polar. Wir wissen auch, dass Alkohole und Phenole befähigt sind, Wasserstoffbrückenbindungen einzugehen. Somit kann man für diese Moleküle hochsiedende bzw. hochschmelzende Verbindungen erwarten. Hochsiedend und hochschmelzend ist hier relativ gemeint im Sinne der organischen Chemie. Ferner ist anzunehmen, dass die Dichten dieser Alkohole und Phenole größer als 1g/cm³ sein sollten und wir können erwarten, dass sie in Wasser gut löslich sind.   2. Ethylenglycol und Glycerin Prinzipiell dürfen wir mit der OH-Gruppe frei am Kohlenstoffgerüst hantieren. Aber Achtung, es gibt eine Einschränkung: An jedem Kohlenstoffatom darf höchstens eine Hydroxy-Gruppe sitzen. Der einfachste mehrwertige Alkohol hat demzufolge folgende Formel. Es handelt sich um Etan-1,3-diol. In der Praxis nennt man diesen Alkohol Ethylenglycol oder einfach nur Glycol. Ethylenglycol hat eine Siedetemperatur von 197°C und seine Dichte beträgt 1,11g/cm³. Ethylenglycol ist unbegrenzt mischbar mit Wasser, Alkohol und Aceton. Es gibt viele Verwendungsmöglichkeiten für Ethylenglycol, die wichtigsten sind wohl die Herstellung von Polyestern und die allgemeine Anwendung in der organischen Synthese. Es gibt verschiedene Möglichkeiten, Ethylenglycol herzustellen. Eine Möglichkeit besteht darin, diese zyklische Verbindung, die Ethylenoxid heißt, mit Wasser umzusetzen. Dabei entsteht Ethylenglycol. Erweitern wir das Molekül des Ethylenglycols um ein weiteres Kohlenstoffatom und um eine weitere Hydroxy-Gruppe, entsteht eine neue chemische Verbindung. Diese Verbindung trägt den systematischen Namen Propan-1,2,3-triol. Gewöhnlich wird der Trivialname Glycerin oder auch seltener Glycerol benutzt. Glycerin siedet bei 290°C bei Zersetzung. Es hat eine Dichte von 1,26g/cm³. Mit Wasser und Alkohol ist es in jedem Verhältnis mischbar. Glycerin kann auf petrochemischem Weg aus Erdöl und Erdgas gewonnen werden. Die 2. Möglichkeit besteht in der Verseifung von Fetten und Ölen. Über die 2. Möglichkeit gibt es bereits auf der Plattform verschiedene Videos.   3. Polyalkohole Es stellte sich heraus, dass viele Hydroxy-Gruppen an der Kohlenstoffkette die Verbindung süßen. Somit sind Polyalkohole Zucker oder zuckerähnliche Verbindungen. Man findet sie in der Zuckerchemie. Ein wichtiger Vertreter besteht aus 6 Kohlenstoffatomen. An jedem dieser Kohlenstoffatome befindet sich eine OH-Gruppe. Die 4 Kohlenstoffatome in der Mitte sind chiral. Wer den Begriff "chiral" noch nicht kennt, bitte diese Bemerkung überhören. Die Verbindung nennt man D-Sorbit. Sie wird verwendet als Zuckerersatzstoff. Ein biologisch wichtiger Polyalkohol ist die folgende Verbindung. Man nennt sie myo-Inosit oder Inositol. Das Triphosphat dieser Verbindung, abgekürzt IP3, ermöglicht die zelluläre Signalübermittlung.   4. Zweiwertige Phenole Aus der Fülle der mehrwertigen Phenole möchte ich nun die zweiwertigen Phenole besprechen. Das wären 1,2-Dihydroxybenzol, man nennt dieses Phenol Brenzcatechin, als Weiteres 1,3-Dihydroxybenzol, Resorzin und schließlich 1,4-Dihydroxybenzol, der Trivialname lautet Hydrochinon. Brenzcatechin hat eine Schmelztemperatur von 105°C. Seine Dichte beträgt 1,34g/cm³. Es ist mit 400g/l sehr gut in Wasser löslich. Man kann Brenzcatechin herstellen, indem man das entsprechende Chlorphenol zusammen mit Natriumhydroxid in eine Schmelze bringt. Als Nebenprodukt entsteht Natriumchlorid. Eine andere Möglichkeit besteht darin, dass man die entsprechende Sulfonsäure zusammen mit Natriumhydroxid erhitzt. Es entstehen Brenzcatechin, Natriumsulfit und Wasser. Brenzcatechin kann unter der Einwirkung von Luft langsam oxidiert werden. Im Ergebnis bildet sich Ortho-Benzochinon. Brenzcatechin hat eine weite Verwendung: In der Fototechnik als Antioxidationsmittel, als Desinfektionsmittel, es dient der Farbstoffherstellung, wird für Riechstoffe verwendet und wird verwendet in der Arzneimittelherstellung. Kommen wir nun zum 1,3-Dihydroxybenzol, zum Resorzin. Resorzin schmilzt bei 111°C. Es hat eine Dichte von 1,28g/cm³. Seine Löslichkeit in Wasser ist gewaltig: 1400g/l. Resorzin kann man herstellen, indem man die entsprechende Disulfonsäure mit Natriumhydroxid umsetzt. Es bildet sich Resorzin, außerdem entsteht als Nebenprodukt Natriumsulfit und Wasser wird frei. Eine chemische Besonderheit des Resorzins besteht darin, dass es mit dem Sauerstoff der Luft nicht zu Benzochinon reagiert. Kommen wir nun zum 1,4-Dihydroxybenzol, zum Hydrochinon. Hydrochinon schmilzt bei 170°C. Es hat eine Dichte von 1,36g/cm³. Die Löslichkeit in Wasser ist geringer als bei den anderen zweiwertigen Phenolen: nur 72g/l. Hydrochinon kann als Phenol durch Oxidation in Anwesenheit von Kaliumhydroxid hergestellt werden. Diese Reaktion heißt ELBS-Reaktion.   5. Zusammenfassung In diesem Video wurden mehrwertige Alkohole und Phenole besprochen. Wichtigste Regel beim Molekülbau ist, dass an einem Kohlenstoffatom nur eine einzige OH-Gruppe sitzen darf. Zwei wichtige Vertreter der Alkohole sind das Ethylenglycol und das Glycerin. Mehrwertige Alkohole und Phenole sind zu Wasserstoffbrückenbindungen befähigt. Daraus ergibt sich, dass sie entweder flüssig oder fest und ziemlich hochsiedend sind. Eine 2. Konsequenz ist die gute Wasserlöslichkeit. Es gibt sehr viele wichtige Polyalkohole. Einer davon ist D-Sorbit, ein Zuckerersatzstoff. Eine weitere Verbindung, myo-Inosit, ist bei der zellulären Signalübertragung beteiligt. Im Video wurden die zweiwertigen Phenole besprochen: Brenzcatechin, Resorzin und Hydrochinon.   Ich danke für die Aufmerksamkeit. Alles Gute. Auf Wiedersehen.  

Informationen zum Video