Advent, Advent, 1 Monat weihnachtliche Laufzeit geschenkt.

Nicht bis zur Bescherung warten, Aktion nur gültig bis zum 18.12.2016!

Textversion des Videos

Transkript Hinweise zur chemischen Bindung

Hinweise zur chemischen Bindung Guten Tag und herzlich willkommen. Dieses Video heißt "Hinweise zur chemischen Bindung".

Der Film ist wie folgt gegliedert:  1. σ- und π-Bindung 2. Heteroatome 3. Polarisierte Atombindung 4. Radikale 5. Wunderelement Kohlenstoff

  1. σ- und π-Bindung. Wir haben bereits früher gelernt, dass das Kohlenstoffatom sp3 hybridisiert ist. Folgerichtig ergibt sich für Verbindungen des Kohlenstoffatoms eine Tetraederstruktur. Wenn ich das Methanmolekül zeichne und das Kohlenstoffatom schwarz markiere und die Wasserstoffatome rot, so befindet sich das Kohlenstoffatom im Zentrum eines Tetraeders. Die Wasserstoffatome befinden sich oberhalb und unterhalb genau versetzt entlang der Flächendiagonalen. Man kann zeigen, dass der Winkel HCH etwa 109° beträgt. Wenn man sich eine Kohlenstoffkette in einem Kohlenstoffwasserstoffmolekül vorstellt, so sind die Bindungen CCC jeweils etwa 109°. Je nach Bindungssituation sind Abweichungen um einige wenige Grad möglich. Außerdem sind innerhalb der Kette Drehungen um die Bindung CC möglich. Vergleichen wir nun die Moleküle des Ethans und des Ethens. Ethan hat zwischen den beiden Kohlenstoffatomen eine Einfachbindung, Ethen eine Doppelbindung. Im Ethanmolekül sind die Kohlenstoffatome sp3 hybridisiert, im Ethenmolekül sp2 hybridisiert. Das führt im Fall des Ethans zu einer Einfachbindung zwischen den Kohlenstoffatomen, während sich im Fall des Ethens eine Doppelbindung ergibt. Die beiden Bindungen im Ethenmolekül unterscheiden sich voneinander. Daher bezeichnet man sie als σ-Bindung, rot, und als π-Bindung, blau. Über die Drehbarkeit um die Bindung CC im Ethanmolekül haben wir schon gesprochen. Bei der Doppelbindung ist so eine Drehung nicht möglich. Im Ethenmolekül gibt es keine Drehung um die Doppelbindung. Die Polarisierbarkeit des Ethans ist wegen der Einfachbindung bedeutend geringer als die Polarisierbarkeit des Ethenmoleküls. Doppelbindungen sind leichter polarisierbar, daraus folgt, dass die Reaktionsfähigkeit des Ethanmoleküls geringer ist als die Reaktionsfähigkeit des Ethenmoleküls. Die σ-Bindung ist stärker als die π-Bindung. Allerdings ist die Beweglichkeit der Elektronen bei der π-Bindung größer als die Beweglichkeit der Elektronen bei der σ-Bindung. Das führt zu einer höheren Polarisierbarkeit und zu einer höheren Reaktionsfähigkeit.

  2. Heteroatome. Wenn die Atome der chemischen Elemente Sauerstoff, Schwefel, Stickstoff oder Phosphor anstelle des chemischen Elements Kohlenstoff im Molekül fungieren, so spricht man von Heteroatomen. Das Kohlenstoffatom kann im Zusammenhang mit Heteroatomen sp3, sp2 oder sp hybridisiert sein. sp3-Hybridisierung tritt bei Aminen, bei Alkoholen oder bei Ether auf. Auch trifft man sie bei Thioalkoholen oder Thioethern an. Das Kohlenstoffatom ist sp2 hybridisiert im Fall von Iminen oder Ketonen und es ist sp hybridisiert, wenn man es mit einem Nitril zu tun hat.

  3. Polarisierte Atombindung. In Kohlenwasserstoffen gibt es eine Gleichverteilung der Ladungen. Daher geht keine polarisierte Atombindung vor. Anders verhält es sich, wenn man anstelle des Kohlenstoffatoms ein Sauerstoffatom oder ein Stickstoffatom im Molekül eingebaut hat. Dann kommt es zu einer Ungleichverteilung der Ladung, einem Elektronenmangel am Kohlenstoffatom und einem Elektronenüberschuss am Heteroatom. Die Ursache dafür ist darin zu suchen, dass die Sauerstoff- und Stickstoffatome elektronegativer sind, als das Kohlenstoffatom. Siehe auch Elektronegativität. Im Ergebnis sind Verbindungen mit Heteroatomen reaktiver als Kohlenwasserstoffe. Daraus ergibt sich, dass vorhandene Elektronenpaare als Elektronen-Donatoren und Elektronen-Akzeptoren bei chemischen Prozessen fungieren. Bei der Substitution greift das Hydroxidion, HO-, die Methylgruppe des Methyliodids an. Am Methyl befindet sich ein Elektronenmangel. Es kommt zu einem Austausch des Iodidions gegen das Hydroxidion. Bei der Addition greift das Hydroxidion das Kohlenstoffatom der Ketogruppe an. Dort hat man es mit Elektronenmangel zu tun. Im Ergebnis entsteht ein negativ geladenes Ion.

  4. Radikal. Bei der Spaltung der Kohlenstoff-Kohlenstoff-Bindung müssen nicht unbedingt Ionen entstehen, es ist auch möglich, dass neutrale Teilchen mit ungepaarten Elektronen gebildet werden. Radikale sind reaktionsfähige Teilchen mit ungepaarten Elektronen.

  5. Wunderelement Kohlenstoff. Wir haben bereits im letzten Video gezeigt, dass das Kohlenstoffatom zur Bildung unterschiedlicher Strukturen geneigt ist. Es bilden sich Ketten, es bilden sich Verzweigungen, Ringe entstehen und auch räumliche Strukturen sind vorhanden. Warum verwendet die Natur kein Silicium, um solche Strukturen herauszubilden, denn Silicium kommt mit 26 % gegenüber dem 0,1 % des Kohlenstoffs in der Natur vor. Eine Ursache besteht darin, dass die Kohlenstoff-Kohlenstoff-Bindung bedeutend stabiler ist als die Silicium-Silicum-Bindung. Auch ist die Kohlenstoff-Wasserstoff-Bindung gegenüber der Silicium-Wasserstoff-Bindung bedeutend stabiler. Daraus ergibt sich, dass zum Beispiel Methan bedeutend stabiler ist, als das entsprechende Silan. Kohlenwasserstoffe sind stabiler als die entsprechenden Siliciumverbindungen. Das ist der Grund dafür, warum das Element Kohlenstoff das Element der Natur ist. 

Ich danke für die Aufmerksamkeit. Alles Gute, auf Wiedersehen.

Informationen zum Video
2 Kommentare
  1. 001

    Guten Abend,

    pi - Elektronen sind delokalisiert, nicht sigma - Elektronen. Letztere sind es auch, aber in viel geringerem Grade.

    Die Bindigkeit ist nach HMO - Theorie (kann man zeigen) 5/3 ist rund 1,67. Nach Dewar wird (schlechter) 1,5 angegeben. Das ist das arithm. Mittel aus 2 und 1.

    Kästchen dazu habe ich noch nicht gemalt. Ist das nötig.
    Ich bin z. Zt. sehr angespannt und kann keine Modelle prüfen.

    Vielleicht späterer mit konkreterer Fragestellung.

    Alles Gute

    Von André Otto, vor 4 Monaten
  2. Default

    Hallo können Sie mir weiter helfen. Hätte eine Frage zu dem Bindungsverhältnis im Aromaten Benzol. Kästchenschema Kohlenstoff, Grundzustand im sp2 , hybridisierten Zustand und Entstehung pi und Sigma Bindung, delokalisiertes Sigma Elektronensystem.

    Von Steppel99, vor 4 Monaten