Textversion des Videos

Transkript Halogenalkane – Sayzew- und Hofmann-Produkt (Expertenwissen)

Guten Tag und herzlich willkommen! In diesem Video geht es wieder um Halogenalkane, um das SAYZEW- und HOFMANN-Produkt. Das Video ist vorgesehen für das Gymnasium, die Kursphase und dem dortigen Leistungskurs.  Der Film ist folgendermaßen gegliedert: 1. Substitution oder Eliminierung 2. Die E2-Reaktion 3. Zwei Reaktionsprodukte 4. Thermodynamische Stabilität 5. Kinetische Stabilität 6. Was haben wir zu erwarten? 7. Die Zusammenfassung.

1. Substitution oder Eliminierung: Bei der Reaktion eines Moleküls Bromethan mit einem Hydroxidion bildet sich 1 Molekül Ethanol und 1 Bromidion wird frei. Diese Austauschreaktion bezeichnet man als Substitutionsreaktion oder Substitution, hier abgekürzt mit S. Alternativ dazu kann sich eine ungesättigte Verbindung bilden, es entsteht eine Doppelbindung. Es bildet sich das Molekül Ethen, daneben entstehen 1 Bromidion und 1 Wassermolekül. Diese Reaktion der Abspaltung bezeichnet man als Eliminierungsreaktion, kurz Eliminierung, hier abgekürzt mit E. 2. Die E2-Reaktion: Es findet ein Angriff des Hydroxidions an das Wasserstoffion statt. Es wird ein Wasserstoffion abgerissen. Die Bindung zwischen dem Wasserstoffatom und dem Kohlenstoffatom geht über zur 2. Bindung zwischen den beiden Kohlenstoffatomen. Gleichzeitig wird das Bromidion abgelöst. Es bildet sich das Ethenmolekül, 1 Wassermolekül entsteht und 1 Bromidion wird frei. Diese Reaktion bezeichnet man als E2. Das E steht für Eliminierung. 2 bedeutet, dass es sich hier um eine bimolekulare Reaktion handelt. Der Angriff der Hydroxidgruppe und das Ablösen des Bromidions erfolgen gleichzeitig. Man spricht hier auch von einer konzertierten Reaktion. 3. Zwei Reaktionsprodukte: Nehmen wir an, wir haben es jetzt mit einem komplizierteren Halogenalkan zu tun, dessen Formel ich hier in Skelettschreibweise darstellen möchte. Das Kohlenstoffatom mit dem Bromatom ist gleichzeitig mit 2 Methylgruppen und 1 Ethylgruppe links verknüpft. Nehmen wir an, dass diese Verbindung mit einer Base reagiert, wobei wir nicht näher benennen wollen, um welche Base es sich hier handelt. Wenn eine Eliminierung abläuft, so kann diese Eliminierung nach 2 Möglichkeiten stattfinden. Einmal kann sich die Doppelbindung in Richtung der Ethylgruppe herausbilden, siehe oben, oder aber es entsteht eine Doppelbindung in Richtung einer der beiden Methylgruppen. Im oberen Fall sprechen wir vom SEYZEW-Produkt, während es sich unten um das HOFMANN-Produkt handelt. 4. Thermodynamische Stabilität: Man hat experimentell gefunden, dass das SEYZEW-Produkt thermodynamisch stabiler als das HOFMANN-Produkt ist. Die theoretische Erklärung dafür liefert die organische Chemie durch das Auszählen der Alkylgruppen an der Doppelbindung. Während das SEYZEW-Produkt 3 Alkylgruppen besitzt, verfügt das HOFMANN-Produkt nur über 2 Alkylgruppen. Man sagt auch, das SEYZEW-Produkt ist thermodynamisch stabilisiert.  5. Kinetische Stabilität: Unter Kinetischer Stabilität versteht man die Bildungsgeschwindigkeit. In diesem Falle bildet sich das SEYZEW-Produkt langsamer als das HOFMANN-Produkt. Wir sagen auch, das HOFMANN-Produkt ist kinetisch stabilisiert gegenüber dem SEYZEW-Produkt. 6. Was haben wir zu erwarten? Wann bildet sich das SEYZEW-Produkt? Und wann bildet sich das HOFMANN-Produkt? Wenn das Basemolekül relativ klein ist, dann greift es an der Ethylgruppe an. Es bildet sich das SEYZEW-Produkt. Große Basemoleküle können das Wasserstoffatom in Nachbarschaft zum Bromatom der Ethylgruppe nicht erreichen. Daher greifen sie das Wasserstoffatom einer der beiden Methylgruppen an. Die Reaktion ist kinetisch kontrolliert und es bildet sich das HOFMANN-Produkt. Das SEYZEW-Produkt bildet sich hauptsächlich dann, wenn ein kleines Basemolekül das Halogenalkan attackiert. Wenn man ein voluminöses, großes Basemolekül hat, so wird hauptsächlich die Methylgruppe attackiert und es bildet sich das HOFMANN-Produkt. 7. Zusammenfassung: Die Reaktionen kann man vergleichen, indem man sie in ein Energie-Reaktions-Koordinaten-Diagramm einträgt. Bei den Reaktionen handelt es sich um Eliminierungen vom Typ E2. Das dargestellte Bromalkan kann auf 2 Wegen reagieren. Zum einen kann sich die Doppelbindung in Richtung des Ethylrestes herausbilden. Das geschieht dann, wenn die angreifende Base ein relativ kleines Teilchen ist. Wir sagen dann auch, dass diese Reaktion thermodynamisch kontrolliert ist. Es bildet sich das SEYZEW-Produkt. Im 2. Fall oben bildet sich die Doppelbindung in Richtung einer der Methylgruppen heraus. Das geschieht hauptsächlich dann, wenn die angreifende Base ein relativ großes Teilchen ist. Wir sagen dann auch, dass diese Reaktion kinetisch kontrolliert ist. Es bildet sich das HOFMANN-Produkt.  Die Erklärung ist folgende: 1 kleines Baseteilchen kann das Wasserstoff der Ethylgruppe, welches in Nachbarschaft zum Bromatom ist, gut angreifen. Es bildet sich das SEYZEW-Produkt. Wenn das Baseteilchen groß ist, so kann es das Wasserstoffatom der Ethylgruppe nicht angreifen. Es greift demzufolge 1 Wasserstoffatom einer der beiden Methylgruppen an. Es bildet sich das HOFMANN-Produkt. Ein Beispiel für ein kleines Basemolekül wäre die Hydroxidgruppe, OH-. Ein Beispiel für ein großes voluminöses Baseteilchen ist das tertiär-Butanolat-Anion. Die Chemie hat ihre Gesetze, zumindest manchmal. Ich danke für die Aufmerksamkeit. Alles Gute, auf Wiedersehen!  

Informationen zum Video