Textversion des Videos

Transkript Bindungswinkel im Methanmolekül

Hallo liebe Chemie-interessierte, hier ist wieder Andre mit einem Video zur Berechnung des Bindungswinkels im Methan. Zur Erinnerung: Methan ist das erste Homologe aus der homologen Reihe der Alkane.

Welche Voraussetzungen solltet Ihr mitbringen: Ihr solltet bereits über die Grundlagen der organischen Chemie Bescheid wissen. Auch der Begriff Alkane und Methan sollte Euch nicht fremd sein. Ich denke, dass Ihr auch Bescheid wisst, was Winkelfunktionen sind und die Begriffe Sinus, Kosinus und Tangens für Euch nicht neu sind. Auch solltet Ihr bereits vertraut sein mit gewissen Begriffen der Stereometrie, der Raumlehre. Ihr solltet wissen, was ein Würfel oder Tetraeder ist. Und schließlich denke ich, solltet Ihr mit dem Lehrsatz des Pythagoras arbeiten können.

Wenn ich für Methan CH4 schreibe, gibt das keinerlei Auskunft über die Struktur dieses Moleküls. Genauere Informationen darüber bekommt man durch eine Schreibweise, die auf der linken Seite der Tafel, der Bildmitte, festgehalten wurde. Ihr seht, dass wir hier unterschiedliche Wasserstoffatome haben. Die normal gezeichneten liegen in der gleichen Ebene wie das Kohlenstoffatom. Das ausgezeichnete Dreieck deutet darauf hin, dass das Wasserstoffatom vor der Ebene liegt. Während die gestrichelte Linie bedeutet, dass das letzte Wasserstoffatom sich hinter der Ebene befindet. Die Wasserstoffatome bilden die Eckpunkte eines Tetraeders, während das Kohlenstoffatom im Zentrum des Tetraeders liegt. Der sogenannte Bindungswinkel HCH beträgt etwa 109,5 Grad, das habt Ihr vielleicht schon gehört. Woher weiß man das aber?

Schreiten wir nun zur Berechnung: Wichtig hierfür ist eine schöne Skizze. Es empfiehlt sich für das Zeichnen eines Tetraeders, zunächst erst einmal einen Würfel zu skizzieren. An den diagonalen Eckpunkten eines Quadrates dieses Tetraeders befinden sich ein Paar Wasserstoffatome. Dazu räumlich versetzt am gegenüberliegenden Quadrat, das weitere Paar an Wasserstoffatomen. Das Kohlenstoffatom liegt im Zentrum des Würfels. Nun können wir alle vier Bindungen zwischen dem Kohlenstoffatom und den 4 Wasserstoffatomen einzeichnen. Durch größere Kreise dargestellt, erhält man nun folgendes Bild. Ich möchte die Kreise nun wieder entfernen, weil sie für die Bearbeitung etwas störend sind. Zusätzlich möchte ich den gesuchten Bindungswinkel Alpha in die Modellskizze eintragen. Der erste Schritt ist das Fällen des Lotes von dem blauen Punkt, dem Kohlenstoffatom, auf das darunter befindliche Quadrat, die Seitenfläche des Würfels. Der Lotfußpunkt wird schwarz symbolisiert. Gleichzeitig erhalten wir das Dreieck schwarz-rot-blau. Der Winkel blau-schwarz- rot ist nach Definition gleich 90 Grad. Nun bestimmen wir die Längen der Seiten des Dreiecks schwarz-rot-blau. Der blaue Punkt liegt im Zentrum des Würfels. Wenn wir annehmen, dass die Würfelseite eine Länge von 1 hat, ist der Abstand vom blauen zum schwarzen Punkt gleich ein halb. Der Abstand vom schwarzen zum roten Punkt ist gleich die Hälfte des Abstandes der beiden roten Punkte im unteren Quadrat. Das ergibt sich aus der zentralen Lage des schwarzen Punktes. Den Abstand zwischen beiden roten Punkten kann man nach dem Lehrsatz des Pythagoras berechnen. Führt diese Rechnung einmal selber aus! Der Abstand ist die Wurzel aus 2. Demzufolge ist der Abstand zwischen schwarz-rot gleich ein halb mal Wurzel 2. Den Abstand zwischen dem blauen und dem roten Punkt berechnen wir nach dem Lehrsatz des Pythagoras. Der Abstand blau-rot, die Hypotenuse in dem Dreieck schwarz-rot-blau, errechnet sich zu Wurzel 3 halbe. Nun haben wir alles, was wir zur Berechnung des Winkels Alpha benötigen. Um eine bessere Übersicht zu erhalten, habe ich das Dreieck blau-schwarz-rot noch einmal aus dem räumlichen Gefüge heraus gelöst und in die Ebene verlegt. Überprüft, ob ich die Seitenlängen richtig übertragen habe! Der Winkel schwarz-blau-rot ergibt genau die Hälfte des Winkels Alpha. Auch das sollte aus Gründen der Symmetrie klar sein. Die Länge der Ankathete im rechtwinkligen Dreieck beträgt ein halb, während die Länge der Hypotenuse Wurzel 3 halbe ist. Daher erhält man, dass der Kosinus von Alpha halbe gleich der Quotient aus ein halb und Wurzel 3 halbe beträgt. Die Vereinfachung des Bruches ergibt Kosinus Alpha Halbe ist gleich 1 durch Wurzel 3. Mit dem Taschenrechner erhalten wir den gerundeten Wert. Alpha Halbe ist etwa 54,73 Grad. Für Alpha ergibt das etwa 109,47 Grad. Für Schöngeister von Euch habe ich die unter dem Dreieck stehende Formel nach Alpha aufgelöst. Man erhält: Alpha ist gleich 2-mal Arccos Kosinus 1 durch Wurzel 3.

Vielleicht hat Euch das Video etwas Freude bereitet, sollte es so sein, habt Ihr mir eine Freude bereitet. Na dann bis zum nächsten Mal. Tschüss!

Informationen zum Video
3 Kommentare
  1. 001

    Danke. Es sollte ein fächerübergreifendes Video werden.

    Alles Gute

    André

    Von André Otto, vor etwa 5 Jahren
  2. Default

    sehr gut erklärt - man muss zwar einige kenntnisse mitbringen - aber wenn mansie hat ist es gut und einfach erklärt

    Von Gruhu13, vor etwa 5 Jahren
  3. Default

    super video

    Von Meyerit2, vor etwa 6 Jahren