Advent, Advent, 1 Monat weihnachtliche Laufzeit geschenkt.

Nicht bis zur Bescherung warten, Aktion nur gültig bis zum 18.12.2016!

Textversion des Videos

Transkript Bindungslänge und Bindungsenergie

Guten Tag und herzlich willkommen. In diesem Video geht es um Bindungslängen und Bindungsenergie. Als Vorkenntnisse solltet ihr klare Vorstellungen über die Atombindung und über Moleküle mitbringen. In diesem Video möchte ich euch die Begriffe Bindungslänge und Bindungsenergie erklären. Ich möchte euch über die Begrifflichkeit Klarheit verschaffen. Außerdem möchte ich euch die dazugehörigen Richtgrößen nennen. Außerdem möchte ich euch den Zusammenhang zwischen der Bindungslänge und einer euch bereits bekannten Größe veranschaulichen. Das Video habe ich in 6 Abschnitte unterteilt: 1. Bindungslänge 2. Bindungsenergie 3. einige Beispiele 4. Richtgrößen 5. Bindungen zwischen Kohlenstoffatomen 6. Zusammenfassung 1. Bindungslänge. Die Bindungslänge ist einer der wichtigsten Begriffe der Strukturchemie. Sie ist eng verknüpft mit dem Begriff der Atombindung. Nehmen wir an, wir haben 2 Atome, zwischen denen eine Atombindung ausgebildet wurde, und wir betrachten nun die Atomkerne dieser Atome. Für uns ist nun der Abstand zwischen den Zentren der beiden Atomkerne interessant. Wir wissen, dass Atomkerne im Vergleich zum Atom sehr klein sind. Daher können wir die Atomkerne getrost als Punkte betrachten. Der Abstand zwischen den beiden Atomkernen wird als Bindungslänge bezeichnet. Wenn wir als Atome jeweils ein Kohlenstoffatom haben, so beträgt der Abstand zwischen beiden Atomen 153 Pikometer. Somit habe ich schon eine gängige Einheit für eine Bindungslänge genannt, nämlich das Pikometer. Eine weitere gängige Einheit ist das Nanometer. Zur Erinnerung: 1 Pikometer sind 10^-12 m und 1 Nanometer sind 10^-9 m. Demzufolge ist der Abstand zwischen beiden Kohlenstoffatomen 0,153 Nanometer. Die Einheit Angström wird in der amerikanischen Literatur noch gerne benutzt. Der Abstand zwischen beiden Kohlenstoffatomen beträgt 1,53 Angström. Praktisch alle chemischen Bindungen liegen im Bereich von 0,07-0,3 Nanometer, das entspricht 70-300 Pikometer. Bindungslängen kann man sowohl experimentell als auch rechnerisch-theoretisch bestimmen. Ein wichtiges Verfahren für die Bestimmung von Bindungslängen ist die Röntgenstrukturanalyse, die immer dann eingesetzt wird, wenn man über Feststoffe verfügt. Alternativ dazu können Bindungslängen aus Schwingungsspektren gewonnen werden. In immer stärkerem Maße werden die Bindungslängen durch quantenchemische Rechnungen gewonnen. Dabei wird die Schrödingergleichung auf einem möglichst hohem Niveau gelöst.  2. Bindungsenergie. Die Bindungsenergie hatte noch andere alternative Bezeichnungen, eine der wichtigsten ist der Begriff Dissoziationsenergie. Ein Chlormolekül kann durch die Zufuhr einer bestimmten Energiemenge in die beiden Chlorradikale zerfallen. Diese Reaktion wird als homolytische Dissoziation bezeichnet. Die Bindungsenergie trägt genauer die Bezeichnung Bindungsenthalpie. Es ist jene Enthalpie, die notwendig ist, damit 1 mol des Chlormoleküls in die entsprechenden Chlorradikale zerfällt. Und das sind 242 Kilojoule pro mol. Somit ist die Bindungsenergie jene Energie, die benötigt wird, um eine kovalente Bindung homolytisch zu spalten. Bei diesem Prozess entstehen Radikale, keine Ionen. 3. Einige Beispiele. Ich möchte einige wichtige Beispiele für Bindungslängen und die entsprechenden Bindungsenergien anführen. Dafür habe ich einige Moleküle ausgewählt, für die die Bindungslängen und Bindungsenergien mit recht guter Genauigkeit bestimmt wurden. Die Moleküle sind: H2 - Wasserstoff, H2O - Wasser, NH3 - Ammoniak und CH4 - Methan. Die entsprechenden Bindungen sind H-H, O-H, N-H und C-H. Für die einzelnen Bindungen wurden folgende Bindungslängen gemessen: 0,074 nm, 0,096 nm, 0,100 nm und 0,107 nm. Alle Bindungsenergien bewegen sich im Bereich von etwa 400 kJ/mol. H-H: 436 Kilojoule pro mol, O-H: 463 Kilojoule pro mol, N-H: 391 Kilojoule pro mol und C-H: 413 Kilojoule pro mol. Man sieht sehr leicht, dass eine scheinbar umgekehrte Korrelation mit den Bindungslängen nicht stattfindet. Offensichtlich spielen noch andere Größen hier eine Rolle. 4. Richtgrößen Es gibt sehr viele chemische Moleküle und daher auch eine Vielzahl chemischer Bindungen. Daher gibt es auch eine große Anzahl verschiedener Bindungslängen. Wenn wir uns an den vorigen Abschnitt erinnern, so können wir folgendes formulieren: Als Richtgröße für die Bindungslänge kann der Wert 100 Pikometer gleich 0,1 Nanometer und für die Bindungsenergie der Wert 400 Kilojoule pro mol dienen. Es ist anzumerken, dass bei den Mehrfachbindungen diese einfachen Regeln nicht mehr so gelten. Bei den Energien zum Beispiel sind höhere Werte zu erwarten. 5. Bindungen zwischen Kohlenstoffatomen. Wir wollen in diesem letzten Abschnitt die Bindungslänge zwischen 2 Kohlenstoffatomen gegen die Bindigkeit abtragen. Die Bindungslängen liegen im Bereich von etwa 120 bis etwas über 150 Pikometer. Die Bindigkeiten überstreichen einen Bereich von 1 bis 3. Bei einer Bindigkeit von 1 wird eine Bindungslänge von 153 Pikometer beobachtet, bei einer Bindigkeit von 2 von 132 Pikometer und schließlich bei einer Bindigkeit von 3, von 120 Pikometer. Die entsprechende Kurve zeigt eine leichte Krümmung. Wir erinnern uns: Bindigkeit 1 entspricht einer Einfachbindung, wie wir sie bei den Alkanen kennen. Bindigkeit 2 entspricht einer Doppelbindung, wie wir sie bei den Alkenen kennen. Bindigkeit 3 entspricht einer Dreifachbindung, wie wir sie bei den Alkinen kennen. Die Bindungslänge im Benzolmolekül beträgt 139 Pikometer. Der Schnittpunkt mit der Kurve ergibt eine Bindigkeit von 1,67. Das ist exakt der Wert den Dewar bestimmt hat. Wir konstatieren: Die Bindungslänge verhält sich umgekehrt zur Bindigkeit. 6. Zusammenfassung Die Bindungslänge zwischen 2 Atomen ist der Abstand zwischen ihren Atomkernen. Die Einheiten sind Nanometer, Pikometer, Angström. Die kleinste Bindungslänge findet man im Wasserstoffatom von 74 Pikometer, es sind auch längere Bindungslängen bekannt, bis etwa 300 Pikometer. Als Richtgröße für Bindungslängen kann man sich merken: 100 Pikometer. Wenn ein Molekül wie das Chlormolekül zu den entsprechenden Radikalen zerfällt, erhält man eine weitere wichtige Größe. Man benötigt für diese homolytische Reaktion 242 Kilojoule pro mol. Dabei handelt es sich um die Bindungsenergie. Als Richtgröße wollen wir uns 400 Kilojoule pro mol merken. Bindungslänge und Bindungsenergie können durch verschiedene Verfahren bestimmt werden. Ein experimentelles Verfahren ist die Röntgenbeugung, auch Röntgenstrukturanalyse genannt. Außerdem kann man diese Größen aus Schwingungsspektren gewinnen. Theroetisch-rechnerisch sind Bindungsenergie und Bindungslänge durch Lösen der Schrödingergleichung zugänglich. Diese Verfahren bezeichnet man als quantenchemisches Rechnen. Bei gleichen Atomen steht die Bindungslänge im umgekehrten Verhältnis zur Bindigkeit. So fällt die Bindungslänge zwischen 2 Kohlenstoffatomen von der Einfach- über die Doppelbindung zur Dreifachbindung. Die Bindungslänge im Benzolmolekül liegt zwischen der der Einfach- und Doppelbindung. Somit ist die Bindungslänge, roh gesprochen, etwa umgekehrt proportional zur Bindigkeit - gleiche beteiligte Atome vorausgesetzt.  Ich danke für die Aufmerksamkeit und wünsche alles Gute. Auf Wiedersehen.

Informationen zum Video