Advent, Advent, 1 Monat weihnachtliche Laufzeit geschenkt.

Nicht bis zur Bescherung warten, Aktion nur gültig bis zum 18.12.2016!

Textversion des Videos

Transkript Bau und Reaktionsverhalten der Carbonylgruppe

Guten Tag und herzlich willkommen. In diesem Video geht es um den Bau und das Reaktionsverhalten der Carbonylgruppe. Das Video ist folgendermaßen strukturiert: 1. Aldehyde und Ketone. 2. Struktur der Carbonylgruppe. 3. Elektrophil und Nucleophil. 4. Reaktion am elektrophilen und nucleophilen Zentrum. 5. Zusammenfassung. 1. Aldehyde und Ketone Aldehyde und Ketone enthalten die Carbonylgruppe, die aus dem vierbindigen Kohlenstoffatom und einem zweibindigen Sauerstoffatom besteht. Die Carbonylgruppe ist gekennzeichnet durch die Kohlenstoff-Sauerstoff-Doppelbindung. Wenn eine der freien Bindungen durch einen organischen Rest R abgesättigt wird, und an der anderen Bindung am Wasserstoff H sitzt, so sprechen wir von einem Aldehyd. Man kann dafür auch abgekürzt schreiben: R-CHO. Wenn an beiden freien Bindungen organische Reste R und R' sitzen, so spricht man von einem Keton. Man kann auch abgekürzt schreiben: R Bindung CO-R'. Wir merken uns: die funktionelle Gruppe C Doppelbindung O, die in Aldehyden und Ketonen enthalten ist, bezeichnet man als Carbonylgruppe. Aldehyde und Ketone spielen eine große Rolle in der Chemie und Biochemie: in Aromastoffen, Vitaminen, Hormonen, Zuckern und beim Zuckerstoffwechsel. 2. Struktur der Carbonylgruppe Die erste Bindung zwischen dem Sauerstoffatom und dem Kohlenstoffatom der Carbonylgruppe wird durch 2 Orbitale verwirklicht. Es handelt sich hier um 2 sp2-Hybrid-Orbitale. Und daher spricht man von sp2-sp2-σ-Bindung. Außerdem gibt es jeweils zwei Orbitale, die nur weniger stark überlappen können. Es handelt sich hier jeweils um p-Orbitale. Und daher ist die zweite Bindung eine p-p-π-Bindung. Die π-Bindung ist bekanntlich im Vergleich zur σ-Bindung stark polarisierbar. Die funktionelle Carbonylgruppe stellt zusammen mit den angedeuteten Bindungen eine planare Struktur dar. Die Bindungswinkel betragen ziemlich genau 120°. 3. Elektrophil und nucleophil Bekanntermaßen ist ein Sauerstoffatom elektronegativer als ein Kohlenstoffatom. Daher befindet sich in der Carbonylgruppe am Sauerstoffatom eine negative Partialladung β minus und entsprechend am Kohlenstoffatom eine positive Partialladung β plus. Man kann die funktionelle Gruppe auch als mesomere Grenzstruktur derart formulieren, als ob das Sauerstoffatom das gesamte π-Elektronenpaar an sich anzieht. Dann bildet sich eine vollkommen negative Ladung am Sauerstoffatom und genauso eine vollkommen positive Ladung am Kohlenstoffatom heraus. Man kann beide mesomere Grenzstrukturen formulieren und mit ihnen bei der Beschreibung von Reaktionen arbeiten. Am Sauerstoffatom besteht somit ein elektrophiles Zentrum, während am Kohlenstoffatom ein nucleophiles Zentrum gebildet wird. Das kann man aus beiden mesomeren Grenzstrukturen erkennen. Das elektrophile Zentrum kann durch ein Elektrophil attackiert werden, während das nucleophile Zentrum dem Angriff von Nucleophilen ausgesetzt ist. Somit kann die Carbonylgruppe durch Elektrophile und Nucleophile angegriffen werden. 4. Reaktion am elektrophilen und nucleophilen Zentrum Ein Nucleophil ist ein Teilchen mit einem freien Elektronenpaar. Meist ist es negativ geladen. Ein Nucleophil greift am nucleophilen Zentrum der Carbonylgruppe an, das heißt am Kohlenstoffatom. Es bildet sich ein negativ geladenes Ion. Die sp2-Hybridisierung des Kohlenstoffatoms wandelt sich in eine sp3-Hybridisierung um. Das gebildete Ion kann nun sehr leicht mit elektronensuchenden Teilchen wie dem Wasserstoff-Ion reagieren. In unserem Fall bildet sich ein Alkohol. Die negative Ladung am Sauerstoffatom macht dieses zu einem elektrophilen Zentrum. Das Wasserstoffatom ist ein Elektrophil und kann damit reagieren. Als weiteres ist es auch möglich, dass das elektrophile Zentrum zuerst angegriffen wird. An der isomeren Grenzstruktur mit den komplett getrennten Ladungen kann man das besonders schön erkennen. Ein elektrophiles Wasserstoffion geht an die negative Ladung des Sauerstoffatoms. Es entsteht ein Carbeniumion, und die Stärke des nucleophilen Zentrums des Teilchens wächst. Das Carbeniumion kann nun sehr gut mit einem Nucleophil reagieren. Im Ergebnis der Reaktion entsteht ein Alkohol. Der Sinn des beginnenden Angriffs des Wasserstoffions besteht darin, dass schwachen Nucleophilen "geholfen" wird, die Carbonylgruppe anzugreifen. 5. Zusammenfassung Das Sauerstoffatom und das Kohlenstoffatom der Carbonylgruppe sind über eine sp2-sp2-σ-Bindung miteinander verbunden. Die zweite Bindung der Doppelbindung ist eine p-p-π-Bindung. Die Carbonylgruppe zusammen mit den Bindungsarmen stellt eine planare Struktur dar. Die Bindungswinkel betragen alle recht genau 120°. Die p-p-π-Bindung ist im Unterschied zur sp2-sp2-σ-Bindung stark polarisierbar. Daher ist es möglich, die Carbonylgruppe als funktionelle Gruppe mit entsprechenden Partialladungen zu schreiben, aber auch eine mesomere Grenzstruktur zu wählen, wo am Sauerstoffatom eine komplette negative Ladung und am Kohlenstoffatom eine komplette positive Ladung sitzen. Am Sauerstoffatom befindet sich demzufolge ein elektrophiles Zentrum; am Kohlenstoffatom sitzt ein nucleophiles Zentrum. Daher erfolgt ein Angriff eines Elektrophils auf das Sauerstoffatom, während Nucleophile das Kohlenstoffatom angreifen. Nach dem Angriff eines Elektrophils bildet sich ein Carbeniumion. Nach dem Angriff eines Nucleophils entsteht ein negatives Ion mit der negativen Ladung am Sauerstoffatom. Das Carbeniumion kann nun seinerseits durch ein Nucleophil angegriffen werden, während das negativ geladene Ion durch ein Elektrophil attackiert wird. Ich danke für die Aufmerksamkeit, alles Gute, auf Wiedersehen!

Informationen zum Video
2 Kommentare
  1. 001

    Völlig richtig. Vielen Dank für die Bemerkung.
    Alles Gute

    Von André Otto, vor etwa 4 Jahren
  2. Default

    4:14 Muss es nicht genau andersherum sein? Das C-Atom ist durch die positive Partialladng doch elektrophil, oder nicht?

    Von Bs1985, vor etwa 4 Jahren