Textversion des Videos

Transkript Aufbau von Metallkomplexen

Guten Tag und herzlich willkommen! Dieses Video heißt: Aufbau von Metallkomplexen. Der Film gehört zur Reihe Metallkomplexe. Für die nötigen Vorkenntnisse solltest du das Video koordinative Bindung bereits gesehen haben. Mein Ziel ist es, dir in diesem Video die Grundlagen des Aufbaus von Metallkomplexen zu erklären. Das Video ist in 6 Abschnitte unterteilt: 1. Zentral-Ionen 2. Liganden 3. Koordinationszahl 4. Gesamtladung 5. Nomenklatur 6. Zusammenfassung 1.Zentral-Ionen: Vor uns befindet sich ein Metallkomplex. Das gelbe Teilchen in seinem Zentrum bezeichnet man als Zentral-Ion. Bei einem räumlichen Modell befindet es sich entsprechend im Zentrum. Zentral-Ionen sind Lewis-Säuren. Das heißt sie sind Akzeptoren von Elektronenpaaren. Dadurch sind sie zur Komplexbildung befähigt. Im Periodensystem der Elemente können nur ganz bestimmte Elemente Zentral-Ionen bilden, und zwar sind das die Nebengruppenelemente, die Übergangsmetalle, die über d-Orbitale verfügen. Übergangsmetalle besitzen d-Orbitale und können so leicht Elektronenlücken schaffen. Biochemisch wichtige Ionen sind das Eisen(II)-Ion, das Eisen(III)-Ion, das Cobalt(II)-Ion, das Cobalt(III)-Ion, das Zink(II)-Ion, das Kupfer(II)-Ion, das Mangan(II)-Ion und das Chrom(III)-Ion. Ich möchte nun einige Beispiele von Metallkomplexen anführen. Eisen(II)-Ionen und Eisen(III)-Ionen bilden eine Reihe interessanter Metallkomplexe. Da hätten wir als erstes das gelbe Blutlaugensalz. Eine ähnliche Zusammensetzung besitzt das rote Blutlaugensalz. Und was wäre die Farbenwelt ohne Preußisch Blau? Eisen-Ionen findet man in einem wichtigen Komplex des Lebens, im Hämoglobin. Sein wichtigster Bestandteil ist das Häm. Cobalt(II)-Ionen und Cobalt(III)-Ionen. Cobalt-Ionen bilden viele Komplexverbindungen. Eine davon stelle ich euch hier vor. Ein lebensnotwendiger Cobalt-Komplex ist das Vitamin B12. Auch die Zink-Ionen, denen man das gar nicht zutraut, bilden schöne Komplexe. Einen davon möchte ich euch hier zeigen. Von den Kupfer(II)-Ionen ist eine Vielfalt an Komplexen bekannt. Mit dreiwertigem Chrom als Zentral-Ion entsteht dieser schöne Chrom-Komplex. 2.Liganden: Liganden sind die hier rot dargestellten Atome oder Atomgruppen, die das Zentral-Ion umschließen. Liganden sind Lewis-Basen. Das heißt, sie sind Donatoren von Elektronenpaaren. Das befähigt sie, zusammen mit den Zentral-Ionen koordinative Bindungen einzugehen. Im räumlichen Modell sind die Liganden die weißen Kugeln. Wir wollen einmal die wichtigsten Liganden in einer Tabelle zusammenstellen. Liganden kann man unterteilen in Anionen und Moleküle. Das uns bereits aus der Salzchemie bekannte Fluorid-Ion wird in der Komplexchemie Fluorido bezeichnet. Chlorid entsprechend als Chlorido und Iodid als Iodido. Und in diesem Stil geht es weiter. Das Hydroxid-Ion heißt in der Komplexchemie Hydroxido. Entsprechend heißt das Cyanid-Ion, wenn es als Ligand in einem Metallkomplex auftaucht, Cyanido. Das Thiocyanat-Anion, in einem Komplex als Ligand, heißt Thiocyanato. Aus Thiolat wird Thiolato und aus Carboxylat, Carboxylato. Schauen wir uns nun die Moleküle an. Ammoniak als Ligand wird zu Ammin mit 2 m in der Mitte. Ein Amin wird, wenn es als Ligand fungiert, zum Amino. Stickstoffmonoxid als Ligand heißt ganz anders, nämlich Nitrosyl, Kohlenstoffmonoxid, ein wichtiger Ligand, Carbonyl. Sauerstoff trägt keinen speziellen Namen. Wir sprechen dann von einem Sauerstoff-Komplex. Bei den Wassermolekülen heißt der Ligand Aqua. Und schließlich können noch Alkohole sowie Ether ausgestattet durch ihre freien Elektronenpaare als Liganden fungieren. Liganden sind somit Anionen und Moleküle, die über ein freies Elektronenpaar verfügen. Interessant vom bindungstheoritischen Standpunkt sind die Liganden Cyanido und Carbonyl. Beide sind reich an π-Bindungen, die mit dem Zentral-Ion in Wechselwirkung treten können. Im Ergebnis gesellt sich zur koordinativen σ-Bindung noch zusätzlich eine π-Bindung. Das hat zur Folge, dass stabile Komplexe entstehen. 3.Koordinationszahl: Ein Zentral-Ion kann von 2 einfachen Liganden umgeben sein. Es besteht aber auch die Möglichkeit, dass es 3 sind oder gar 4 oder 5 oder vielleicht sogar 6. Die Koordinationszahl ist die Zahl der Ligandenbindungsplätze am Zentral-Ion. Es sind Koordinationszahlen von 2 bis 12 bekannt. Die häufigsten Koordinationszahlen sind 2, 4 und 6. Schauen wir uns einmal 3 Koordinationszahlen am räumlichen Modell an. Dieser Metallkomplex besitzt die Koordinationszahl 4. Hier haben wir einen Metallkomplex mit Koordinationszahl 5. Und schließlich das hier ist ein Metallkomplex mit Koordinationszahl 6. Und nun drei Beispiele zu den Koordinationszahlen 2, 4 und 6. Wir beginnen mit 2. 2 Ammin-Liganden schließen ein einwertiges Silber-Ion ein. Es handelt sich um das Diamminsilber(I)-Ion. Also Komplex-Ion wird es so geschrieben. 4 Ammoniakteilchen und 1 Kupfer(II)-Ion. Das heißt 4 Ammin-Liganden und 1 zweiwertiges Kupfer-Ion. Dieser Metallkomplex heißt Tetraminkupfer(II)-Ion. Und schließlich beim dritten Beispiel: 6 Cyanido-Liganden. Sie umhüllen ein Zentral-Ion, das Eisen(II)-Ion. Ich habe euch hier 3 schöne, um nicht zu sagen klassische Beispiele, für die Koordinationszahlen 2, 4 und 6 vorgestellt. 4.Gesamtladung: Wir betrachten das Hexacyanidoferrat(III)-Ion. Ferrat und 3 deuten auf ein dreiwertiges Eisen-Ion hin. Hexacyanido bedeutet, wir haben es mit 6 Cyanido-Liganden zu tun. Das gebildete Metallkomplex-Ion hat zunächst einmal die Formel [Fe(CN)6]. Wir addieren nun die Ladungen der einzelnen Ionen: 6×(-1) + 1×(+3) und erhalten -3. -3 ist auch die Gesamtladung des komplexen Ions. Wir prägen uns ein, die Gesamtladung ist die Summe der Teilladungen. 5.Nomenklatur: Ich möchte hier nur einige, wichtige Grundregeln nennen. Als erstes, die Liganden werden in alphabetischer Reihenfolge genannt. Also Aqua kommt vor Carbonyl. Die Zahl der Liganden wird mit kleinen griechischen Buchstaben benannt. di=zwei, tetra=vier, und hexa=sechs. Die Namen der Liganden leiten sich häufig von den Anionen ab. Bei den Molekülen müssen sie mitunter extra gelernt werden. Siehe Tabelle. Ein Beispiel: CN^- ist nicht Cyanid, sondern Cyanido. Wir haben im Zentrum stets ein Metall. Handelt es sich um ein Kation, sagt man zum Beispiel einfach Silber(I)-Ion. Ein Anion assoziiert man mit einem Säurerest-Ion. Man schreibt als einfach zum Beispiel ferrat(III)-Ion. Die römischen Zahlen in den runden Klammern bedeuten jeweils die Wertigkeit des entsprechenden Ions. Ein Salz wird einfach so bezeichnet, wie wir es bereits aus der Salzchemie kennen. Der Name des Salzes setzt sich zusammen aus Kation und Anion. Beim Kation nennt man dieses selbst nicht, sonder beschränkt sich nur auf den Namen des Metalles. Zum Beispiel: Diamminsilber(I)-Chlorid oder für ein Anion Kaliumhexacyanidoferrat(III). 6.Zusammenfassung: Die Metallkomplexe möchte ich am Beispiel des komplexen Ions [Fe(CN)6] mit der Ladung ^-2, von der wird hier noch nicht wissen, ob sie richtig ist, erläutern. Das Eisenteilchen, ein Ion, hier rot markiert, ist das Zentral-Ion. Die Cyanido-Teilchen, hier blau markiert, sind die Liganden. Die 6 ist die Koordinationszahl. ^-2 ist die Gesamtladung. Diese setzt sich aus der Summe der Teilladungen der Bestandteile des Komplexes zusammen. Wir schreiben: +2 für das Eisen(II)-Ion und 6×(-1) für die 6 Cyanido-Liganden. Wir erhalten somit -4 als Gesamtladung und müssen unseren Wert von 2- korrigieren. Koordinationszahlen überstreichen Werte von 2 bis 12. Die wichtigsten und häufigsten Koordinationszahlen betragen 2, 4 und 6. Der Name des komplexen Metall-Ions heißt: Hexacyanidoferrat(II)-Ion. Die Liganden eines Metallkomplexes werden in alphabetischer Reihenfolge genannt. Handelt es bei einem komplexen Ion um ein Anion, so wird das mit einem Säurerest-Ion assoziiert, und man schreibt am Ende at, zum Beispiel ...at(II)-Ion, wie hier. Bei einem Kation schreibt man einfach am Ende das Metall und dahinter die Wertigkeit, wie zum Beispiel ...silber(I)-Ion. Ein Salz wird genauso ausgesprochen, wie wir es aus der Salzchemie kennen, nämlich aus Kation und Anion zusammengesetzt, wobei beim Kation auf den Begriff Ion verzichtet wird. Man nennt dort einfach nur das Metall. Zum Abschluss dafür 2 Beispiele: Kaliumhexacyanidoferrat(III) und als zweites und letztes Diamminsilber(I)-chlorid. Ich danke für eure Aufmerksamkeit. Alles Gute! Auf Wiedersehen!

Informationen zum Video
4 Kommentare
  1. 001

    Guten Morgen,

    ich habe den (hoffentlich) letzten Stand der IUPAC übersetzt. In den Lehrbüchern der Leistungskurse ist man nicht immer auf dem neuesten Stand.

    Also: Bitte bei IUPAC nachschauen.

    Alles Gute

    Von André Otto, vor mehr als 2 Jahren
  2. Default

    Hier scheint ein Fehler bei der Nomeklatur zu sein, da bei anionischen liganden zwar ein -o angehängt wird, aber dabei das -id überücksichtigt bleibt.
    Bsp.: Fluor - fluoro, Chlor - chloro, cyanid- cyano

    Ich mag falsch liegen jedoch scheint dies der Normalfall zu sein.

    Ein wenig verwirrend der Teil aber der Rest ist leicht verständlich und gut erklärt :)

    Von Berkan Uenal, vor mehr als 2 Jahren
  3. Default

    Sehr gute Videos fürs Medizinstudium

    Klasse Video!

    Von P Mahal, vor fast 4 Jahren
  4. Default

    Klasse Video! Sehr übersichtlich und informativ! Danke :).

    Von Studiosus Chemicus, vor fast 4 Jahren