Textversion des Videos

Transkript Anionischen Polymerisation – Reaktionsmechanismus

Guten Tag und herzlich willkommen!

Dieses Video heißt "Anionische Polymerisation (Leistungskurs)". Für die Vorkenntnisse solltest du die Videos über die Radikalische Polymerisation und die Kationische Polymerisation bereits gesehen haben. Mein Ziel ist es, dir in diesem Video Verständnis und Einsatzbreite der anionischen Polymerisation zu vermitteln.

Der Film besteht aus 8 Abschnitten: 1. Das Reaktionsprinzip 2. Monomere 3. Lösungsmittel 4. Initiatoren 5. Der Mechanismus 6. Besonderheiten der Reaktion 7. Einige Kunststoffe und 8. Zusammenfassung

  1. Das Reaktionsprinzip

Bei der Polymerisation reagiert die Doppelbindung des Monomers. Für die Initiation der Reaktion kommen sowohl Radikale als auch Kationen infrage. Aber auch Anionen können die Reaktion initiieren. Die beiden ersten Initiatoren habe ich euch bereits in den entsprechenden Videos vorgestellt. Heute soll es um Anionen als Initiatoren gehen. Wenn die Doppelbindung mit Anionen reagieren soll, benötigt sie eine Aktivierung. Die Modelle zweier aktivierter Monomere seht ihr hier. Es handelt sich dabei um Monomere mit elektronenziehenden Gruppen. Das linke Monomer verfügt über 1 elektronenziehende Gruppe, das rechte Monomer besitzt sogar 2 solcher Gruppen.

Betrachten wir nun 3 Fälle. Im 1. Fall ist die Doppelbindung nicht aktiviert. Im Fall daneben ist die Doppelbindung durch eine elektronenziehende Gruppe aktiviert. Das führt zur Schwächung der Doppelbindung. Im Ergebnis entsteht eine positive Partialladung. Als 3. betrachten wir den Fall, wo die Doppelbindung durch 2 elektronenziehende Gruppen stark aktiviert ist. Die Doppelbindung wird noch stärker geschwächt und die dabei entstehende positive Partialladung wird noch größer. Wie reagiert das Anion auf diese 3 unterschiedlichen Teilchen? Im Fall links wird praktisch keine Wechselwirkung stattfinden. Im mittleren Fall wird das Anion mit der Doppelbindung reagieren. Im Fall rechts findet zwischen beiden Reaktionspartnern eine starke Wechselwirkung statt.

  1. Monomere

Ich möchte hier einige Monomere vorstellen, die für die anionische Polymerisation infrage kommen. Im 1. Fall befinden sich an der Doppelbindung 2 Cyanogruppen, es ist ein Dinitril. Das 2. Monomer besitzt eine Cyanogruppe und eine Estergruppe. Dieses Monomer hat 1 Methylgruppe, das ist keine elektronenziehende Gruppe. Die elektronenziehende Gruppe ist hier die Nitrogruppe. Bei diesem Monomer zieht die Estergruppe die Elektronen. Hier ist es eine Cyanogruppe. Und hier ist ein aromatischer Rest, eine Phenylgruppe, die elektronenziehende Gruppe. Die Reaktivität dieser Isomere ergibt sich aus der Stärke der elektronenziehenden Gruppen.

  1. Lösungsmittel

3 typische Vertreter möchte ich nennen. Zunächst ist es der Ethylenglycoldimethylether. Ein 2. Lösungsmittel ist Pyridin. Und auch Tetrahydrofuran wird verwendet. Alle 3 Verbindungen enthalten freie, nicht bindende Elektronenpaare. Damit handelt es sich um Lewis-Basen. Dem Tetrahydrofuran werden wir noch begegnen, es wird in die Reaktion eingreifen.

  1. Initiatoren

Bei den Anionen dieser Polymerisation handelt es sich genauer gesprochen um Basen. Einmal können das Brønsted-Basen sein. Diese Basen sollen Hydroxidionen liefern. Es können aber auch Lewis-Basen sein. Diese stellen bei der Reaktion ein nicht bindendes Elektronenpaar zur Verfügung. Beispiele für Brønsted-Basen sind diese Moleküle. Beispiele für Lewis-Basen sind die Anionen dieser Verbindungen. Von links nach rechts handelt es sich um folgende Verbindungen: Wasser, Natriumhydroxid, ein Alkoholat, ein Amid und BuLi. BuLi ist die Abkürzung für Butyllithium. Butyllithium wird uns als Initiator beim Mechanismus begegnen. Die Stärke der Basen wächst von links nach rechts. Es gilt die Regel: Je schwächer die Aktivierung der Doppelbindung, umso stärker muss die Base sein.

  1. Der Mechanismus

Als Initiator wollen wir diese Verbindung verwenden. Erinnert ihr euch? Richtig, es ist Butyllithium. Als Lösungsmittel und gleichzeitig Reaktionspartner wird Tetrahydrofuran verwendet. Tetrahydrofuran ist eine Lewis-Base. Es reagiert mit dem Lithiumion, das eine Lewis-Säure ist. Im Ergebnis entsteht dieses Kation. Außerdem entsteht ein Anion. Dieses Ion ist ein Carbanion, eine Lewis-Base. Diese Base ist sehr stark. Als Nächstes erfolgt die Initiation. Der Initiator ist eine sehr starke Base, daher kann er mit einem nicht aktivierten Monomer reagieren. Wir nehmen als Monomer einfach Ethylen, das uns schon von anderen Polymerisationen bekannt ist. Das Monomer verfügt über keine elektronenziehenden Gruppen, es ist nicht aktiviert. Die Ladung des Carbanions schafft eine neue Bindung. Die eine Bindung der Doppelbindung klappt um und es bildet sich beim Kohlenstoffatom rechts eine negative Ladung. Im Ergebnis entsteht ein neues Carbanion. Nun setzt das Kettenwachstum ein. Das Carbanion reagiert mit einem weiteren Monomerteilchen. Aus einem Carbanion bildet sich ein weiteres, größeres Carbanion. Im nächsten Schritt bildet sich ein noch größeres Carbanion usw. Schließlich kommt es zum Kettenabbruch. Ein sehr, sehr großes Carbanion ist entstanden. Wenn das Monomer verbraucht ist, geht die Reaktion einfach nicht mehr weiter. Aber auch das Carbanion fühlt sich wohl und ist guter Dinge. Man spricht hier auch von einem "lebenden" Polymer. Bei Zugabe von weiterem Monomer geht die Reaktion weiter. Einen Abbruch erreicht man durch die Zugabe von Wasserstoffionen, das kann durch Wasser oder Chlorwasserstoff erfolgen. Außerdem kann die Reaktion durch Copolymerisation fortgesetzt werden.

  1. Besonderheiten der Reaktion

Die anionische Polymerisation ist in der Regel sehr langsam. Man verfügt bei der Reaktion über eine gute Kontrolle der Kettenlänge. Allerdings kann man keine sehr langen Ketten herstellen. Unter geeigneten Bedingungen ist Stereokontrolle möglich, es bilden sich isotaktische Strukturen. Stereokontrolle, das heißt, die Bildung regelmäßiger Strukturen, ist bei der Verwendung apolarer Monomere und apolarer Lösungsmittel möglich. Lebende Polymere sind zur Pfropfcopolymerisation befähigt. Durch Zugabe eines anderen Monomers kommt es zur Blockcopolymerisation.

  1. Einige Kunststoffe

Durch anionische Polymerisation entsteht Polyoxymethylen. Hier wird Formaldehyd im Beisein einer geeigneten Base polymerisiert. Es gibt viele Verwendungen für diesen Kunststoff, bestimmte Verschlüsse, das Telefon und Steckverbindungen seien genannt. Polymethylmethacrylat: Das Monomer habe ich euch bereits eingangs als Modell gezeigt. Eine der Herstellungsformen des Polymethylmethacrylats ist Plexiglas®. Verwendung findet der Kunststoff u. a. als Rückstrahler, im Haushalt und als Zahnersatz. Polymethylcyanacrylat: Das Monomer habe ich bereits eingangs gezeigt. Es ist Hauptbestandteil des Sekundenklebers. Das Polymer mit sich wiederholender Einheit sieht so aus. Das Besondere dieses Monomers besteht darin, dass es schon durch Wasser zur Polymerisation kommt. Wir haben es bereits als stark aktiviertes Monomer kennengelernt. Es entsteht bei der Initiation das Carbanion und 1 Proton wird frei. Die anderen Reaktionsschritte laufen ähnlich ab, wie besprochen.

  1. Zusammenfassung

Die anionische Polymerisation läuft vorzugsweise mit aktivierten Monomeren ab. Aktivierende Gruppen können Estergruppen, die Nitrilgruppe, die Nitrogruppe oder die Phenylgruppe sein. Ihre Wirkung beruht auf einer Schwächung der Doppelbindung. Im Ergebnis entsteht eine positive Partialladung und der Angriff des Anions wird erleichtert. Bei den Initiatoren, den Anionen, handelt es sich um Basen. Bei der Polymerisation entsteht ein großes Carbanion, welches man als "lebendes" Polymer bezeichnet. Die Reaktion kann durch Wasser oder Chlorwasserstoff zum Abbruch gebracht werden. Außerdem sind verschiedene Varianten der Copolymerisation möglich. Die Reaktion ist im Regelfall langsam, Ausnahme: Sekundenkleber. Die Länge der Kette ist beschränkt, jedoch regelbar. Unter geeigneten Bedingungen ist die sterische Kontrolle der Reaktion möglich.

Ich danke für die Aufmerksamkeit. Alles Gute, auf Wiedersehen!

Informationen zum Video