Textversion des Videos

Transkript Zelluläre Hormonwirkung

Hallo! Sicher kennst du das Gefühl verliebt zu sein, mutig zu sein, Trauer zu empfinden oder Angst zu haben. Aber hast du auch gewusst das Hormone dabei eine ganz wichtige Rolle spielen?! Hormone können aber noch mehr.

Sicher weißt Du schon einiges über Hormone, wo sie gebildet werden und wie sie heißen. Aber weißt Du auch, wie Hormone auf zellulärer Ebene wirken? Schau Dir einfach dieses Video an. Es zeigt dir, dass Hormone auf zwei ganz verschiedene Weisen von einer Zelle wahrgenommen werden können, nämlich auf direktem oder indirektem Weg.

Direkte Wirkungsweise von Hormonen

Die erste Möglichkeit ist die direkte Hormonwirkung, die bei den fettlöslichen Hormonen vorkommt. Steroidhormone wie die Sexualhormone Testosteron und Progesteron werden aus Cholesterin gebildet und sind daher fettlöslich. Daher können sie Zellmembranen durchdringen und so von der Blutbahn direkt in die Zielzelle gelangen.

In der Zielzelle bilden sie mit einem passenden Rezeptor einen Komplex - den sogenannten Hormon-Rezeptor-Komplex. Dieser gelangt in den Zellkern und bindet dort an bestimmte DNA-Abschnitte. Das führt zur Aktivierung bestimmter Gene. Das heißt, diese Gene werden abgelesen, also transkribiert.

Die dabei entstehende mRNA wird danach im Zellinnenraum in ein Protein übersetzt, also translatiert. Dieses Protein kann dann eine bestimmte Reaktion innerhalb der Zelle auslösen oder wird von der Zelle nach außen abgegeben um an anderer Stelle im Körper zu wirken.

Man spricht bei diesem Mechanismus der direkten Hormonwirkung auch von Genaktivierungsmechanismus. Liegt kein Hormon vor, wird auch kein Hormon-Rezeptor-Komplex gebildet und die jeweiligen Gene werden nicht aktiviert.

Indirekte Wirkungsweise von Hormonen

Die zweite Möglichkeit ist eine indirekte Hormonwirkung. Diese findet man bei den fettunlöslichen Hormonen, die die Zellmembran nicht passieren können. Ein Beispiel für ein indirekt wirkendes Hormon ist das Stresshormon Adrenalin.

Hier erfolgt die Erkennung des Hormons an der Zelloberfläche, und zwar durch einen membrangebundenen Rezeptor. Dieser bindet das Hormon, wodurch ein an den Rezeptor gebundenes Enyzm aktiviert wird. Dieses aktiviert einen Mechanismus innerhalb der Zelle und es kommt zur Spaltung von ATP zu ADP und cAMP.

Das entstandene cAMP leitet das ursprüngliche Hormonsignal in der Zelle weiter und fungiert sozusagen als zweiter Botenstoff. Daher bezeichnet man cAMP auch als second messenger. cAMP kann zum Beispiel inaktive Enzyme aktivieren, so dass diese ein Substrat umsetzen können.

Der Abbau von Glycogen zu Glucose in der Leber ist beispielsweise auf die Aktivierung eines bestimmten Enzyms zurückzuführen. Das dafür zuständige Hormon ist Adrenalin. Adrenalin wird in Stresssituationen ausgeschüttet und sorgt in der Leber über den eben beschriebenen cAMP-Weg für eine Freisetzung von Glucose. Diese Glucose wird ins Blut abgegeben und setzt den Körper - gemeinsam mit anderen Reaktionen - in einen Alarmzustand, so dass er in einer Gefahrensituation schnell reagieren kann.

Wirkungsweise Coffein

Sehr spannend ist in diesem Zusammenhang die Wirkung von Coffein. Sicher hast Du schon die Wirkung von Coffein kennengelernt. Coffein kommt in Kaffee, Cola oder auch Tee vor. Es führt dazu, dass zum Beispiel die Herzfrequenz und die Konzentrationsfähigkeit steigt. Hohe Mengen von Coffein hemmen den Abbau von cAMP in den Zellen. Dadurch kommt es zu erhöhten cAMP-Konzentrationen in der Zelle. Damit hält die Wirkung von Adrenalin länger an.

Ein zweiter Ansatzpunkt von Coffein ist im Zentralnervensystem. Dort bindet es an die gleichen Rezeptoren, die Adenosin binden. Adenosin wird bei Anstrengung gebildet und sorgt eigentlich dafür, dass das Gehirn bei Erschöpfung mit Ermüdungserscheinungen reagiert. Nach Coffeinkonsum kann Adenosin also nicht an seine entsprechenden Rezeptoren binden. Müdigkeit und Erschöpfung werden somit verhindert.

Hormone und Rezeptoren

Du hast jetzt die beiden Möglichkeiten kennengelernt, wie ein Hormon auf zellulärer Ebene wirken kann. Sicher ist dir aufgefallen, dass sowohl bei der direkten als auch bei der indirekten Hormonwirkung das Hormon von einem Rezeptor erkannt und gebunden wird. Dadurch wird sichergestellt, dass nur die Zellen auf das Hormon reagieren, die diese spezifischen Rezeptoren tragen.

Zellen, die keinen entsprechenden Rezeptor besitzen, zeigen keine Reaktion auf das Hormon. Dadurch kannst du dir jetzt ganz einfach erklären, warum zum Beispiel nur ein bestimmtes Organ auf ein Hormon reagiert während andere Organe nicht reagieren.

Zusammenfassung

Jetzt kannst Du Dir vorstellen, wie Hormone auf zellulärer Ebene wirken. Hormone können auf direkte Weise wirken, indem sie innerhalb der Zelle an einen Rezeptor binden und so eine Aktivierung bestimmter Gene hervorrufen. Wirken Hormone auf indirekte Weise, binden sie an der Zelloberfläche an einen Rezeptor, das Signal wird dann im Zellinneren über cAMP als second-messenger weitergeleitet und es kommt zur Aktivierung bestimmter Enzyme. Beide Mechanismen machen es möglich, dass durch Hormone eine genaue Regulation vieler Prozesse im menschlichen Körper stattfindet. Bei dem nächsten Adrenalin-Stoß weißt du also ganz genau Bescheid. Tschüss und bis zum nächsten mal!

Informationen zum Video
2 Kommentare
  1. Anna maria

    Hallo Rodied,
    danke für deinen Hinweis. Du hast natürlich Recht. Wir werden deinen Hinweis so schnell wie möglich im Video berücksichtigen.

    Von Anna Maria Z., vor fast 2 Jahren
  2. Default

    Indirekte Wirkung von Hormonen am Beispiel des Adrenalins:

    Bei der cAMP-Bildung aus ATP entsteht kein ADP, sondern es wird PP (Phosphat) abgespalten.

    Von Rodied, vor fast 2 Jahren