Advent, Advent, 1 Monat weihnachtliche Laufzeit geschenkt.

Nicht bis zur Bescherung warten, Aktion nur gültig bis zum 18.12.2016!

Textversion des Videos

Transkript Synapse – hemmende und erregende Synapsen

Hallo, mein Name ist Sabine und in diesem Video möchte ich dir den Unterschied zwischen erregenden und hemmenden Synapsen erklären. Mit diesem Wissen verstehst du dann auch, die Informationsverarbeitung im Zellkörper des Neurons.

Zuerst eine kleine Wiederholung. Bisher hast du gelernt, dass wenn im Axonendköpfchen ein Aktionspotenzial ankommt, sich Kalziumkanäle öffnen und positiv geladenen Kalziumionen in das Innere des Axonendknöpfchens strömen. Dadurch können die synaptischen Bläschen, die einen Neurotransmitter enthalten, zur präsynaptischen Membran wandern und geben dann ihren Botenstoff in den synaptischen Spalt. Auf der postsynaptischen Membran dockt der Transmitter an einen Rezeptor an. Dadurch werden Ionenkanäle geöffnet, einströmendes Natrium polt nun die Membran um. Bei Muskelfasern hieß dieses Potenzial, das entstand, ein Plattenpotenzial. Allgemein bezeichnet man diese Depolarisation aber als EPSP, erregendes postsynaptisches Potenzial.

Die Prozesse an der hemmenden Synapse sind eigentlich recht ähnlich. Wenn ein Aktionspotenzial im Axonendknöpfchen ankommt, werden auch hier wieder Kalziumionen dafür sorgen, dass die synaptischen Bläschen mit der präsynaptischen Membran verschmelzen können und den Transmitter in den Spalt geben. Wenn der Transmitter nun in seiner postsynaptischen Membran auf einen Rezeptor trifft, werden auch hier Ionenkanäle geöffnet. Aber diesmal für Chloridionen und oder Kaliumionen. Die Chloridionen strömen in das Zellinnere und die Kaliumionen verstärkt in die Zwischenzellflüssigkeit. Dadurch wird das Ruhepotenzial der postsynaptischen Membran negativer, also es gibt eine Hyperpolarisation. Das nun entstandene Potenzial nennt man HPSP/IPSP. Ausgeschrieben bedeutet HPSP "hemmendes postsynaptisches Potenzial" und IPSP "Inhibitorisches postsynaptisches Potenzial". Im weiteren Verlauf des Films werde ich immer HPSP benutzen, weil ich mir das persönlich besser merken kann als "Inhibitorisches postsynaptisches Potenzial". Aber beide Begriffe sind durchaus gleichberechtigt.

Hemmende Synapsen sind wichtig für unseren Körper, da sie der Gegenspieler zu den erregenden sind. Dadurch können Übererregungen verhindert werden, die im Extremfall zu Starrkrämpfen führen könnten. Synapsen liegen meist an den Dendriten oder am Zellkörper des Folgeneurons an, aber manchmal können sie auch am Ende des Axons vorkommen und regeln dort die Menge des freigesetzten Neurotransmitters. Zuerst soll eine erregende Synapse am Axonendköpfchen anliegen. Wenn ein Aktionspotenzial einläuft, sorgt diese erregende Synapse dafür, dass die Kaliumkanäle geschlossen werden, die für die Rückpolung der Membran zuständig sind. Das heißt, der Zustand des Ruhepotenzials wird viel später erreicht. Im Gegensatz zu einem normalen Aktionspotenzial hält dieses Aktionspotenzial viel länger an, und dadurch schüttet das Axonendknöpfchen viel mehr Neurotransmitter in den synaptischen Spalt. Eine hemmende Synapse sorgt dafür, dass im Axonendköpfchen zusätzliche Kaliumkanäle geöffnet werden. Das heißt, ein einkommendes Aktionspotenzial wird abgeschwächt, da ja die Membran negativer geladen ist. Daraus folgt, dass viel weniger Neurotransmitter in den synaptischen Spalt gegeben werden kann. Nun kommen wir zur Informationsverarbeitung. Als 1. musst du wissen, dass Aktionspotenziale nur im Axon der Nervenzelle entstehen können. weil es nur hier spannungsgesteuerte Natrium- und Kaliumkanäle gibt. Erregende postsynaptische Potenziale und hemmende postsynaptische Potenziale kommen in den Dendriten und am Zellkörper der Nervenzelle vor. Erregende bzw. hemmende postsynaptische Potenziale, die an der Synapse gebildet werden, breiten sich Richtung Zellkörper und Axonhügel aus. Sie werden nicht fortgeleitet, wie z. B. Aktionspotenziale. Die Höhe von erregenden postsynaptischen Potenzialen nimmt mit zunehmender Entfernung der Synapse ab.

Das heißt, eine einzige Synapse kann bei einem Folgeneuron noch keine Depolarisation im Axonhügel hervorrufen. Daher gibt es auch die räumliche Summation. Eine Nervenzelle besitzt viele erregende Synapsen. Und wenn davon mehrere erregt werden, summieren sich die einzelnen erregenden Potenziale. Wenn der Schwellenwert im Axonhügel erreicht wird, entsteht ein Aktionspotenzial, dass dann weitergeleitet wird.

Ist der zeitliche Abstand zwischen Aktionspotenzialen sehr kurz, d.h. es gibt eine sehr hohe Frequenz an Aktionspotenzialen, ist das erste erregende postsynaptische Potenzial noch nicht ganz abgefangen. Das heißt, es kann sich mit einem 2. erregenden Potenzial überlagern, das nennt man dann zeitliche Summation. Dadurch kommt es zu einer länger anhaltenden Depolarisation des Axonhügels. Und wenn der Schwellenwert überschritten ist, kann auch hier ein Aktionspotenzial weitergeleitet werden.

Jetzt musst du noch wissen, dass hemmende und erregende Potenziale gegensinnig sind, wie + und -, aber das konnte man sich ja schon fast denken. Der Axonhügel funktioniert dann wie ein Rechenzentrum, der die positive und negative Wirkung der Potenziale zusammenrechnet. Die wird dann in die Frequenz an neuen Aktionspotenzialen übersetzt, die dann im Axon weitergeleitet werden. Die Frequenz am neuen Aktionspotenzialen ist umso höher, je stärker der Axonhügel depolarisiert wurde.

Ich hoffe dieser Film konnte dir beim Lernen helfen und ich bedanke mich sehr bei dir für das Zusehen. Hoffentlich bis bald, Sabine.

Informationen zum Video
4 Kommentare
  1. Marcel

    Hallo :) Ja da hast du Recht. Das Alles-oder-nichts-Prinzip löst ein immer gleich starkes AP aus, dieses wandert dann unverändert bis zum Synapsenendknöpfchen. Eine Hemmende Synapse kann das Membranpotential im Endknöpfchen jedoch beeinflussen. So werden weniger Transmitter freigegeben und das EPSP (erregnde postsynaptische Potential) wird geringer ausfallen.

    Von Marcel Schenke, vor mehr als 2 Jahren
  2. Default

    Gilt nicht das Alles-oder-Nichts-Gesetz? Wenn doch, dann kann sich die Amplitude des APs nicht verringern? (s. Minute 3:44)

    Von Khangholi 1, vor mehr als 2 Jahren
  3. Default

    endlich mal alles auf einen blick ;) tolle zusammenfassung!!

    Von Sinaida , vor fast 3 Jahren
  4. Default

    Danke fürs Video! :)

    Von Oksana B, vor etwa 4 Jahren